Katherine J. Wert
Columbia University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Katherine J. Wert.
Cell Stem Cell | 2016
Thorold W. Theunissen; Marc Friedli; Yupeng He; Evarist Planet; Ryan C. O’Neil; Styliani Markoulaki; Julien Pontis; Haoyi Wang; Alexandra Iouranova; Michaël Imbeault; Julien Duc; Malkiel A. Cohen; Katherine J. Wert; Rosa Castanon; Zhuzhu Zhang; Yanmei Huang; Joseph R. Nery; Jesse Drotar; Tenzin Lungjangwa; Didier Trono; Joseph R. Ecker; Rudolf Jaenisch
Summary Recent studies have aimed to convert cultured human pluripotent cells to a naive state, but it remains unclear to what extent the resulting cells recapitulate in vivo naive pluripotency. Here we propose a set of molecular criteria for evaluating the naive human pluripotent state by comparing it to the human embryo. We show that transcription of transposable elements provides a sensitive measure of the concordance between pluripotent stem cells and early human development. We also show that induction of the naive state is accompanied by genome-wide DNA hypomethylation, which is reversible except at imprinted genes, and that the X chromosome status resembles that of the human preimplantation embryo. However, we did not see efficient incorporation of naive human cells into mouse embryos. Overall, the different naive conditions we tested showed varied relationships to human embryonic states based on molecular criteria, providing a backdrop for future analysis of naive human pluripotency.
Human Molecular Genetics | 2013
Katherine J. Wert; Richard J. Davis; Javier Sancho-Pelluz; Patsy M. Nishina; Stephen H. Tsang
Approximately 36 000 cases of simplex and familial retinitis pigmentosa (RP) worldwide are caused by a loss in phosphodiesterase (PDE6) function. In the preclinical Pde6α(nmf363) mouse model of this disease, defects in the α-subunit of PDE6 result in a progressive loss of photoreceptors and neuronal function. We hypothesized that increasing PDE6α levels using an AAV2/8 gene therapy vector could improve photoreceptor survival and retinal function. We utilized a vector with the cell-type-specific rhodopsin (RHO) promoter: AAV2/8(Y733F)-Rho-Pde6α, to transduce Pde6α(nmf363) retinas and monitored its effects over a 6-month period (a quarter of the mouse lifespan). We found that a single injection enhanced survival of photoreceptors and improved retinal function. At 6 months of age, the treated eyes retained photoreceptor cell bodies, while there were no detectable photoreceptors remaining in the untreated eyes. More importantly, the treated eyes demonstrated functional visual responses even after the untreated eyes had lost all vision. Despite focal rescue of the retinal structure adjacent to the injection site, global functional rescue of the entire retina was observed. These results suggest that RP due to PDE6α deficiency in humans, in addition to PDE6β deficiency, is also likely to be treatable by gene therapy.
Stem cell reports | 2015
Ana C. D’Alessio; Zi Peng Fan; Katherine J. Wert; Petr Baranov; Malkiel A. Cohen; Janmeet S. Saini; Evan Cohick; Carol Charniga; Daniel Benjamin Dadon; Nancy M. Hannett; Michael J. Young; Sally Temple; Rudolf Jaenisch; Tong Ihn Lee; Richard A. Young
Summary Hundreds of transcription factors (TFs) are expressed in each cell type, but cell identity can be induced through the activity of just a small number of core TFs. Systematic identification of these core TFs for a wide variety of cell types is currently lacking and would establish a foundation for understanding the transcriptional control of cell identity in development, disease, and cell-based therapy. Here, we describe a computational approach that generates an atlas of candidate core TFs for a broad spectrum of human cells. The potential impact of the atlas was demonstrated via cellular reprogramming efforts where candidate core TFs proved capable of converting human fibroblasts to retinal pigment epithelial-like cells. These results suggest that candidate core TFs from the atlas will prove a useful starting point for studying transcriptional control of cell identity and reprogramming in many human cell types.
Proceedings of the National Academy of Sciences of the United States of America | 2016
Malkiel A. Cohen; Katherine J. Wert; Johanna Goldmann; Styliani Markoulaki; Yosef Buganim; Dongdong Fu; Rudolf Jaenisch
Significance We generated mouse–human neural crest chimeras by introducing neural crest cells derived from human embryonic stem cells or induced pluripotent stem cells (iPSCs) in utero into the gastrulating mouse embryo. The cells migrated in the embryo along normal migration routes and contributed to functional pigment cells in the postnatal animal, as demonstrated by coat color contribution. This experimental system represents a novel paradigm that allows studying the developmental potential of human cells under in vivo conditions. Importantly, this platform will allow for the investigation of human diseases in the animal by using patient-derived iPSCs. The neural crest (NC) represents multipotent cells that arise at the interphase between ectoderm and prospective epidermis of the neurulating embryo. The NC has major clinical relevance because it is involved in both inherited and acquired developmental abnormalities. The aim of this study was to establish an experimental platform that would allow for the integration of human NC cells (hNCCs) into the gastrulating mouse embryo. NCCs were derived from pluripotent mouse, rat, and human cells and microinjected into embryonic-day-8.5 embryos. To facilitate integration of the NCCs, we used recipient embryos that carried a c-Kit mutation (Wsh/Wsh), which leads to a loss of melanoblasts and thus eliminates competition from the endogenous host cells. The donor NCCs migrated along the dorsolateral migration routes in the recipient embryos. Postnatal mice derived from injected embryos displayed pigmented hair, demonstrating differentiation of the NCCs into functional melanocytes. Although the contribution of human cells to pigmentation in the host was lower than that of mouse or rat donor cells, our results indicate that hNCCs, injected in utero, can integrate into the embryo and form mature functional cells in the animal. This mouse–human chimeric platform allows for a new approach to study NC development and diseases.
Human Molecular Genetics | 2014
Katherine J. Wert; Javier Sancho-Pelluz; Stephen H. Tsang
Deficiencies in rod-specific cyclic guanosine monophosphate (cGMP) phosphodiesterase-6 (PDE6) are the third most common cause of autosomal recessive retinitis pigmentosa (RP). Previously, viral gene therapy approaches on pre-clinical models with mutations in PDE6 have demonstrated that the photoreceptor cell survival and visual function can be rescued when the gene therapy virus is delivered into the subretinal space before the onset of disease. However, no studies have currently been published that analyze rescue effects after disease onset, a time when human RP patients are diagnosed by a clinician and would receive the treatment. We utilized the AAV2/8(Y733F)-Rho-Pde6α gene therapy virus and injected it into a pre-clinical model of RP with a mutation within the alpha subunit of PDE6: Pde6α(D670G). These mice were previously shown to have long-term photoreceptor cell rescue when this gene therapy virus was delivered before the onset of disease. Now, we have determined that subretinal transduction of this rod-specific transgene at post-natal day (P) 21, when approximately half of the photoreceptor cells have undergone degeneration, is more efficient in rescuing cone than rod photoreceptor function long term. Therefore, AAV2/8(Y733F)-Rho-Pde6α is an effective gene therapy treatment that can be utilized in the clinical setting, in human patients who have lost portions of their peripheral visual field and are in the mid-stage of disease when they first present to an eye-care professional.
Developments in ophthalmology | 2014
Katherine J. Wert; Jonathan H. Lin; Stephen H. Tsang
Retinal degeneration, including that seen in age-related macular degeneration and retinitis pigmentosa (RP), is the most common form of neural degenerative disease in the world. There is great genetic and allelic heterogeneity of the various retinal dystrophies. Classifications of these diseases can be ambiguous, as there are similar clinical presentations in retinal degenerations arising from different genetic mechanisms. As would be expected, alterations in the activity of the phototransduction cascade, such as changes affecting the renewal and shedding of the photoreceptor OS, visual transduction, and/or retinol metabolism have a great impact on the health of the retina. Mutations within any of the molecules responsible for these visual processes cause several types of retinal and retinal pigment epithelium degenerative diseases. Apoptosis has been implicated in the rod cell loss seen in a mouse model of RP, but the precise mechanisms that connect the activation of these pathways to the loss of phosphodiesterase (PDE6β) function has yet to be defined. Additionally, the activation of apoptosis by CCAAT/-enhancer-binding protein homologous protein (CHOP), after activation of the unfolded protein response pathway, may be responsible for cell death, although the mechanism remains unknown. However, the mechanisms of cell death after loss of function of PDE6, which is a commonly studied mammalian model in research, may be generalizable to loss of function of different key proteins involved in the phototransduction cascade.
The Journal of Neuroscience | 2013
Richard J. Davis; Chun-Wei Hsu; Yi-Ting Tsai; Katherine J. Wert; Javier Sancho-Pelluz; Chyuan-Sheng Lin; Stephen H. Tsang
The third-most common cause of autosomal recessive retinitis pigmentosa (RP) is due to defective cGMP phosphodiesterase-6 (PDE6). Previous work using viral gene therapy on PDE6-mutant mouse models demonstrated photoreceptors can be rescued if administered before degeneration. However, whether visual function can be rescued after degeneration onset has not been addressed. This is a clinically important question, as newly diagnosed patients exhibit considerable loss of rods and cones in their peripheral retinas. We have generated and characterized a tamoxifen inducible Cre-loxP rescue allele, Pde6bStop, which allows us to temporally correct PDE6-deficiency. Whereas untreated mutants exhibit degeneration, activation of Cre-loxP recombination in early embryogenesis produced stable long-term rescue. Reversal at later time-points showed partial long-term or short-lived rescue. Our results suggest stable restoration of retinal function by gene therapy can be achieved if a sufficient number of rods are treated. Because patients are generally diagnosed after extensive loss of rods, the success of clinical trials may depend on identifying patients as early as possible to maximize the number of treatable rods.
Journal of Visualized Experiments | 2012
Katherine J. Wert; Jessica M. Skeie; Richard J. Davis; Stephen H. Tsang; Vinit B. Mahajan
The loss of sight affects approximately 3.4 million people in the United States and is expected to increase in the upcoming years.(1) Recently, gene therapy and stem cell transplantations have become key therapeutic tools for treating blindness resulting from retinal degenerative diseases. Several forms of autologous transplantation for age-related macular degeneration (AMD), such as iris pigment epithelial cell transplantation, have generated encouraging results, and human clinical trials have begun for other forms of gene and stem cell therapies.(2) These include RPE65 gene replacement therapy in patients with Lebers congenital amaurosis and an RPE cell transplantation using human embryonic stem (ES) cells in Stargardts disease.(3-4) Now that there are gene therapy vectors and stem cells available for treating patients with retinal diseases, it is important to verify these potential therapies in animal models before applying them in human studies. The mouse has become an important scientific model for testing the therapeutic efficacy of gene therapy vectors and stem cell transplantation in the eye.(5-8) In this video article, we present a technique to inject gene therapy vectors or stem cells into the subretinal space of the mouse eye while minimizing damage to the surrounding tissue.
Human Molecular Genetics | 2014
Katherine J. Wert; Jessica M. Skeie; Alexander G. Bassuk; Alicia K. Olivier; Stephen H. Tsang; Vinit B. Mahajan
Exome sequencing indicated that the gene encoding the calpain-5 protease, CAPN5, is the likely cause of retinal degeneration and autoimmune uveitis in human patients with autosomal dominant neovascular inflammatory vitreoretinopathy (ADNIV, OMIM #193235). To explore the mechanism of ADNIV, a human CAPN5 disease allele was expressed in mouse retinas with a lentiviral vector created to express either the wild-type human (h) CAPN5 or the ADNIV mutant hCAPN5-R243L allele under a rhodopsin promoter with tandem green fluorescent protein (GFP) expression. Vectors were injected into the subretinal space of perinatal mice. Mouse phenotypes were analyzed using electroretinography, histology and inflammatory gene expression profiling. Mouse calpain-5 showed high homology to its human ortholog with >98% sequence identity that includes the ADNIV mutant residue. Calpain-5 protein was expressed in the inner and outer segments of the photoreceptors and in the outer plexiform layer. Expression of the hCAPN5-R243L allele caused loss of the electroretinogram b-wave, photoreceptor degeneration and induction of immune cell infiltration and inflammatory genes in the retina, recapitulating major features of the ADNIV phenotype. Intraocular neovascularization and fibrosis were not observed during the study period. Our study shows that expression of the hCAPN5-R243L disease allele elicits an ADNIV-like disease in mice. It further suggests that ADNIV is due to CAPN5 gain-of-function rather than haploinsufficiency, and retinal expression may be sufficient to generate an autoimmune response. Genetic models of ADNIV in the mouse can be used to explore protease mechanisms in retinal degeneration and inflammation as well as preclinical therapeutic testing.
Human Molecular Genetics | 2015
Katherine J. Wert; Alexander G. Bassuk; Wen-Hsuan Wu; Lokesh Gakhar; Diana Coglan; MaryAnn Mahajan; Shu Wu; Jing Yang; Chyuan-Sheng Lin; Stephen H. Tsang; Vinit B. Mahajan
A single amino acid mutation near the active site of the CAPN5 protease was linked to the inherited blinding disorder, autosomal dominant neovascular inflammatory vitreoretinopathy (ADNIV, OMIM #193235). In homology modeling with other calpains, this R243L CAPN5 mutation was situated in a mobile loop that gates substrate access to the calcium-regulated active site. In in vitro activity assays, the mutation increased calpain protease activity and made it far more active at low concentrations of calcium. To test whether the disease allele could yield an animal model of ADNIV, we created transgenic mice expressing human (h) CAPN5(R243L) only in the retina. The resulting hCAPN5(R243L) transgenic mice developed a phenotype consistent with human uveitis and ADNIV, at the clinical, histological and molecular levels. The fundus of hCAPN5(R243L) mice showed enhanced autofluorescence (AF) and pigment changes indicative of reactive retinal pigment epithelial cells and photoreceptor degeneration. Electroretinography showed mutant mouse eyes had a selective loss of the b-wave indicating an inner-retina signaling defect. Histological analysis of mutant mouse eyes showed protein extravasation from dilated vessels into the anterior chamber and vitreous, vitreous inflammation, vitreous and retinal fibrosis and retinal degeneration. Analysis of gene expression changes in the hCAPN5(R243L) mouse retina showed upregulation of several markers, including members of the Toll-like receptor pathway, chemokines and cytokines, indicative of both an innate and adaptive immune response. Since many forms of uveitis share phenotypic characteristics of ADNIV, this mouse offers a model with therapeutic testing utility for ADNIV and uveitis patients.