Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Katherine L. Misuraca is active.

Publication


Featured researches published by Katherine L. Misuraca.


Cell | 2011

Glioma Stem Cell Proliferation and Tumor Growth Are Promoted by Nitric Oxide Synthase-2

Christine E. Eyler; Qiulian Wu; Kenneth Yan; Jennifer MacSwords; Devin Chandler-Militello; Katherine L. Misuraca; Justin D. Lathia; Michael T. Forrester; Jeongwu Lee; Jonathan S. Stamler; Steven A. Goldman; Markus Bredel; Roger E. McLendon; Andrew E. Sloan; Anita B. Hjelmeland; Jeremy N. Rich

Malignant gliomas are aggressive brain tumors with limited therapeutic options, and improvements in treatment require a deeper molecular understanding of this disease. As in other cancers, recent studies have identified highly tumorigenic subpopulations within malignant gliomas, known generally as cancer stem cells. Here, we demonstrate that glioma stem cells (GSCs) produce nitric oxide via elevated nitric oxide synthase-2 (NOS2) expression. GSCs depend on NOS2 activity for growth and tumorigenicity, distinguishing them from non-GSCs and normal neural progenitors. Gene expression profiling identified many NOS2-regulated genes, including the cell-cycle inhibitor cell division autoantigen-1 (CDA1). Further, high NOS2 expression correlates with decreased survival in human glioma patients, and NOS2 inhibition slows glioma growth in a murine intracranial model. These data provide insight into how GSCs are mechanistically distinct from their less tumorigenic counterparts and suggest that NOS2 inhibition may be an efficacious approach to treating this devastating disease.


PLOS ONE | 2013

PD-0332991, a CDK4/6 Inhibitor, Significantly Prolongs Survival in a Genetically Engineered Mouse Model of Brainstem Glioma

Kelly L. Barton; Katherine L. Misuraca; Francisco Cordero; Elena Y. Dobrikova; Hooney Min; Matthias Gromeier; David G. Kirsch; Oren J. Becher

Diffuse intrinsic pontine glioma (DIPG) is an incurable tumor that arises in the brainstem of children. To date there is not a single approved drug to effectively treat these tumors and thus novel therapies are desperately needed. Recent studies suggest that a significant fraction of these tumors contain alterations in cell cycle regulatory genes including amplification of the D-type cyclins and CDK4/6, and less commonly, loss of Ink4a-ARF leading to aberrant cell proliferation. In this study, we evaluated the therapeutic approach of targeting the cyclin-CDK-Retinoblastoma (Rb) pathway in a genetically engineered PDGF-B-driven brainstem glioma (BSG) mouse model. We found that PD-0332991 (PD), a CDK4/6 inhibitor, induces cell-cycle arrest in our PDGF-B; Ink4a-ARF deficient model both in vitro and in vivo. By contrast, the PDGF-B; p53 deficient model was mostly resistant to treatment with PD. We noted that a 7-day treatment course with PD significantly prolonged survival by 12% in the PDGF-B; Ink4a-ARF deficient BSG model. Furthermore, a single dose of 10 Gy radiation therapy (RT) followed by 7 days of treatment with PD increased the survival by 19% in comparison to RT alone. These findings provide the rationale for evaluating PD in children with Ink4a-ARF deficient gliomas.


PLOS ONE | 2015

A high-throughput in vitro drug screen in a genetically engineered mouse model of diffuse intrinsic pontine glioma identifies BMS-754807 as a promising therapeutic agent.

Kyle G. Halvorson; Kelly L. Barton; Kristin Schroeder; Katherine L. Misuraca; Christine M. Hoeman; Alex Chung; Donna Crabtree; Francisco Cordero; Raj Kamal Singh; Ivan Spasojevic; Noah Berlow; Ranadip Pal; Oren J. Becher

Diffuse intrinsic pontine gliomas (DIPGs) represent a particularly lethal type of pediatric brain cancer with no effective therapeutic options. Our laboratory has previously reported the development of genetically engineered DIPG mouse models using the RCAS/tv-a system, including a model driven by PDGF-B, H3.3K27M, and p53 loss. These models can serve as a platform in which to test novel therapeutics prior to the initiation of human clinical trials. In this study, an in vitro high-throughput drug screen as part of the DIPG preclinical consortium using cell-lines derived from our DIPG models identified BMS-754807 as a drug of interest in DIPG. BMS-754807 is a potent and reversible small molecule multi-kinase inhibitor with many targets including IGF-1R, IR, MET, TRKA, TRKB, AURKA, AURKB. In vitro evaluation showed significant cytotoxic effects with an IC50 of 0.13 μM, significant inhibition of proliferation at a concentration of 1.5 μM, as well as inhibition of AKT activation. Interestingly, IGF-1R signaling was absent in serum-free cultures from the PDGF-B; H3.3K27M; p53 deficient model suggesting that the antitumor activity of BMS-754807 in this model is independent of IGF-1R. In vivo, systemic administration of BMS-754807 to DIPG-bearing mice did not prolong survival. Pharmacokinetic analysis demonstrated that tumor tissue drug concentrations of BMS-754807 were well below the identified IC50, suggesting that inadequate drug delivery may limit in vivo efficacy. In summary, an unbiased in vitro drug screen identified BMS-754807 as a potential therapeutic agent in DIPG, but BMS-754807 treatment in vivo by systemic delivery did not significantly prolong survival of DIPG-bearing mice.


Brain Pathology | 2013

Aurora kinase B is a potential therapeutic target in pediatric diffuse intrinsic pontine glioma.

Pawel Buczkowicz; Maryam Zarghooni; Ute Bartels; Andrew Morrison; Katherine L. Misuraca; Tiffany Chan; Eric Bouffet; Annie Huang; Oren J. Becher; Cynthia Hawkins

Pediatric high‐grade astrocytomas (HGAs) account for 15–20% of all pediatric central nervous system tumors. These neoplasms predominantly involve the supratentorial hemispheres or the pons—diffuse intrinsic pontine gliomas (DIPG). Assumptions that pediatric HGAs are biologically similar to adult HGAs have recently been challenged, and the development of effective therapeutic modalities for DIPG and supratentorial HGA hinges on a better understanding of their biological properties. Here, 20 pediatric HGAs (9 DIPGs and 11 supratentorial HGAs) were subject to gene expression profiling following approval by the research ethics board at our institution. Many of these tumors showed expression signatures composed of genes that promote G1/S and G2/M cell cycle progression. In particular, Aurora kinase B (AURKB) was consistently and highly overexpressed in 6/9 DIPGs and 8/11 HGAs. Array data were validated using quantitative real‐time PCR and immunohistochemistry, as well as cross‐validation of our data set with previously published series. Inhibition of Aurora B activity in DIPG and in pediatric HGA cell lines resulted in growth arrest accompanied by morphological changes, cell cycle aberrations, nuclear fractionation and polyploidy as well as a reduction in colony formation. Our data highlight Aurora B as a potential therapeutic target in DIPG.


Frontiers in Oncology | 2015

Pre-Clinical Models of Diffuse Intrinsic Pontine Glioma

Katherine L. Misuraca; Francisco Cordero; Oren J. Becher

Diffuse intrinsic pontine glioma (DIPG) is a rare and incurable brain tumor that arises in the brainstem of children predominantly between the ages of 6 and 8. Its intricate morphology and involvement of normal pons tissue precludes surgical resection, and the standard of care today remains fractionated radiation alone. In the past 30 years, there have been no significant advances made in the treatment of DIPG. This is largely because we lack good models of DIPG and therefore have little biological basis for treatment. In recent years, however, due to increased biopsy and acquisition of autopsy specimens, research is beginning to unravel the genetic and epigenetic drivers of DIPG. Insight gleaned from these studies has led to improvements in approaches to both model these tumors in the lab and to potentially treat them in the clinic. This review will detail the initial strides toward modeling DIPG in animals, which included allograft and xenograft rodent models using non-DIPG glioma cells. Important advances in the field came with the development of in vitro cell and in vivo xenograft models derived directly from autopsy material of DIPG patients or from human embryonic stem cells. Finally, we will summarize the progress made in the development of genetically engineered mouse models of DIPG. Cooperation of studies incorporating all of these modeling systems to both investigate the unique mechanisms of gliomagenesis in the brainstem and to test potential novel therapeutic agents in a preclinical setting will result in improvement in treatments for DIPG patients.


Neoplasia | 2016

A Novel Mouse Model of Diffuse Intrinsic Pontine Glioma Initiated in Pax3-Expressing Cells.

Katherine L. Misuraca; Guo Hu; Kelly L. Barton; Alexander H. Chung; Oren J. Becher

Diffuse intrinsic pontine glioma (DIPG) is a rare and incurable brain tumor that arises predominately in children and involves the pons, a structure that along with the midbrain and medulla makes up the brainstem. We have previously developed genetically engineered mouse models of brainstem glioma using the RCAS/Tv-a system by targeting PDGF-B overexpression, p53 loss, and H3.3K27M mutation to Nestin-expressing brainstem progenitor cells of the neonatal mouse. Here we describe a novel mouse model targeting these same genetic alterations to Pax3-expressing cells, which in the neonatal mouse pons consist of a Pax3 +/Nestin +/Sox2 + population lining the fourth ventricle and a Pax3 +/NeuN + parenchymal population. Injection of RCAS-PDGF-B into the brainstem of Pax3-Tv-a mice at postnatal day 3 results in 40% of mice developing asymptomatic low-grade glioma. A mixture of low- and high-grade glioma results from injection of Pax3-Tv-a;p53fl/fl mice with RCAS-PDGF-B and RCAS-Cre, with or without RCAS-H3.3K27M. These tumors are Ki67 +, Nestin +, Olig2 +, and largely GFAP − and can arise anywhere within the brainstem, including the classic DIPG location of the ventral pons. Expression of the H3.3K27M mutation reduces overall H3K27me3 as compared with tumors without the mutation, similar to what has been previously shown in human and mouse tumors. Thus, we have generated a novel genetically engineered mouse model of DIPG, which faithfully recapitulates the human disease and represents a novel platform with which to study the biology and treatment of this deadly disease.


Neurosurgery | 2015

140 A High-Throughput In Vitro Drug Screen in a Genetically Engineered Mouse Model of Diffuse Intrinsic Pontine Glioma Identifies BMS-754807 as a Promising Therapeutic Agent

Kyle G. Halvorson; Kelly L. Barton; Kristin Schroeder; Katherine L. Misuraca; Christine M. Hoeman; Alex Chung; Donna Crabtree; Francisco Cordero; Raj Kamal Singh; Ivan Spasojevic; Noah Berlow; Ranadip Pal; Oren J. Becher


PMC | 2014

Pax3 expression enhances PDGF-B-induced brainstem gliomagenesis and characterizes a subset of brainstem glioma

Katherine L. Misuraca; Kelly L. Barton; Alexander H. Chung; Alexander K. Diaz; Simon J. Conway; David L. Corcoran; Suzanne J. Baker; Oren J. Becher


Neuro-oncology | 2014

PM-12Pax3 EXPRESSION ENHANCES PDGF-B-INDUCED BRAINSTEM GLIOMAGENESIS AND CHARACTERIZES A SUBSET OF BRAINSTEM GLIOMA.

Katherine L. Misuraca; Alexander K. Diaz; Suzanne J. Baker; Oren J. Becher

Collaboration


Dive into the Katherine L. Misuraca's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alexander K. Diaz

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge