Katherine L. Orchard
University of Cambridge
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Katherine L. Orchard.
Journal of the American Chemical Society | 2017
Moritz F. Kuehnel; Katherine L. Orchard; Kristian E. Dalle; Erwin Reisner
Photocatalytic conversion of CO2 into carbonaceous feedstock chemicals is a promising strategy to mitigate greenhouse gas emissions and simultaneously store solar energy in chemical form. Photocatalysts for this transformation are typically based on precious metals and operate in nonaqueous solvents to suppress competing H2 generation. In this work, we demonstrate selective visible-light-driven CO2 reduction in water using a synthetic photocatalyst system that is entirely free of precious metals. We present a series of self-assembled nickel terpyridine complexes as electrocatalysts for the reduction of CO2 to CO in organic media. Immobilization on CdS quantum dots allows these catalysts to be active in purely aqueous solution and photocatalytically reduce CO2 with >90% selectivity under UV-filtered simulated solar light irradiation (AM 1.5G, 100 mW cm-2, λ > 400 nm, pH 6.7, 25 °C). Correlation between catalyst immobilization efficiency and product selectivity shows that anchoring the molecular catalyst on the semiconductor surface is key in controlling the selectivity for CO2 reduction over H2 evolution in aqueous solution.
Angewandte Chemie | 2015
Moritz F. Kuehnel; David W. Wakerley; Katherine L. Orchard; Erwin Reisner
Formic acid is considered a promising energy carrier and hydrogen storage material for a carbon-neutral economy. We present an inexpensive system for the selective room-temperature photocatalytic conversion of formic acid into either hydrogen or carbon monoxide. Under visible-light irradiation (λ>420 nm, 1 sun), suspensions of ligand-capped cadmium sulfide nanocrystals in formic acid/sodium formate release up to 116±14 mmol H2 gcat−1 h−1 with >99 % selectivity when combined with a cobalt co-catalyst; the quantum yield at λ=460 nm was 21.2±2.7 %. In the absence of capping ligands, suspensions of the same photocatalyst in aqueous sodium formate generate up to 102±13 mmol CO gcat−1 h−1 with >95 % selectivity and 19.7±2.7 % quantum yield. H2 and CO production was sustained for more than one week with turnover numbers greater than 6×105 and 3×106, respectively.
Chemical Communications | 2009
Arántzazu González-Campo; Katherine L. Orchard; Norio Sato; Milo S. P. Shaffer; Charlotte K. Williams
This communication presents a clean and efficient in situ method for the preparation of thermoset composites containing ZnO nanoparticles and/or ZnO-coated carbon nanotubes.
Advanced Functional Materials | 2015
Ee Taek Hwang; Khizar Sheikh; Katherine L. Orchard; Daisuke Hojo; Valentin Radu; Chong-Yong Lee; Emma V. Ainsworth; Colin W. J. Lockwood; Manuela Gross; Tadafumi Adschiri; Erwin Reisner; Julea N. Butt; Lars J. C. Jeuken
In nature, charge recombination in light-harvesting reaction centers is minimized by efficient charge separation. Here, it is aimed to mimic this by coupling dye-sensitized TiO2 nanocrystals to a decaheme protein, MtrC from Shewanella oneidensis MR-1, where the 10 hemes of MtrC form a ≈7-nm-long molecular wire between the TiO2 and the underlying electrode. The system is assembled by forming a densely packed MtrC film on an ultra-flat gold electrode, followed by the adsorption of approximately 7 nm TiO2 nanocrystals that are modified with a phosphonated bipyridine Ru(II) dye (RuP). The step-by-step construction of the MtrC/TiO2 system is monitored with (photo)electrochemistry, quartz-crystal microbalance with dissipation (QCM-D), and atomic force microscopy (AFM). Photocurrents are dependent on the redox state of the MtrC, confirming that electrons are transferred from the TiO2 nanocrystals to the surface via the MtrC conduit. In other words, in these TiO2/MtrC hybrid photodiodes, MtrC traps the conduction-band electrons from TiO2 before transferring them to the electrode, creating a photobioelectrochemical system in which a redox protein is used to mimic the efficient charge separation found in biological photosystems.
Energy and Environmental Science | 2018
Shane Ardo; David Fernandez Rivas; Miguel A. Modestino; Verena Schulze Greiving; Fatwa F. Abdi; Esther Alarcon Llado; Vincent Artero; Katherine E. Ayers; Corsin Battaglia; Jan-Philipp Becker; Dmytro Bederak; Alan Berger; Francesco Buda; Enrico Chinello; Bernard Dam; Valerio Di Palma; Tomas Edvinsson; Katsushi Fujii; Han Gardeniers; Hans Geerlings; S. Mohammad H. Hashemi; Sophia Haussener; Jurriaan Huskens; Brian D. James; Kornelia Konrad; Akihiko Kudo; Pramod Patil Kunturu; Detlef Lohse; Bastian Mei; Eric L. Miller
Solar-powered electrochemical production of hydrogen through water electrolysis is an active and important research endeavor. However, technologies and roadmaps for implementation of this process do not exist. In this perspective paper, we describe potential pathways for solar-hydrogen technologies into the marketplace in the form of photoelectrochemical or photovoltaic-driven electrolysis devices and systems. We detail technical approaches for device and system architectures, economic drivers, societal perceptions, political impacts, technological challenges, and research opportunities. Implementation scenarios are broken down into short-term and long-term markets, and a specific technology roadmap is defined. In the short term, the only plausible economical option will be photovoltaic-driven electrolysis systems for niche applications. In the long term, electrochemical solar-hydrogen technologies could be deployed more broadly in energy markets but will require advances in the technology, significant cost reductions, and/or policy changes. Ultimately, a transition to a society that significantly relies on solar-hydrogen technologies will benefit from continued creativity and influence from the scientific community.
Chemistry: A European Journal | 2018
David W. Wakerley; Khoa H. Ly; Nikolay Kornienko; Katherine L. Orchard; Moritz F. Kuehnel; Erwin Reisner
Abstract Photocatalytic H2 production through water splitting represents an attractive route to generate a renewable fuel. These systems are typically limited to anaerobic conditions due to the inhibiting effects of O2. Here, we report that sacrificial H2 evolution with CdS quantum dots does not necessarily suffer from O2 inhibition and can even be stabilised under aerobic conditions. The introduction of O2 prevents a key inactivation pathway of CdS (over‐accumulation of metallic Cd and particle agglomeration) and thereby affords particles with higher stability. These findings represent a possibility to exploit the O2 reduction reaction to inhibit deactivation, rather than catalysis, offering a strategy to stabilise photocatalysts that suffer from similar degradation reactions.
Archive | 2017
Erwin Reisner; David W. Wakerley; Moritz F. Kuehnel; Timothy E. Rosser; Khoa H. Ly; Katherine L. Orchard
Raw data supporting Nature Energy publication: Solar-driven reforming of lignocellulose to H2 with a CdS/CdOx photocatalyst
ChemElectroChem | 2017
Ee Taek Hwang; Katherine L. Orchard; Daisuke Hojo; Joseph Beton; Colin W. J. Lockwood; Tadafumi Adschiri; Julea N. Butt; Erwin Reisner; Lars J. C. Jeuken
Abstract Coupling light‐harvesting semiconducting nanoparticles (NPs) with redox enzymes has been shown to create artificial photosynthetic systems that hold promise for the synthesis of solar fuels. High quantum yields require efficient electron transfer from the nanoparticle to the redox protein, a property that can be difficult to control. Here, we have compared binding and electron transfer between dye‐sensitized TiO2 nanocrystals or CdS quantum dots and two decaheme cytochromes on photoanodes. The effect of NP surface chemistry was assessed by preparing NPs capped with amine or carboxylic acid functionalities. For the TiO2 nanocrystals, binding to the cytochromes was optimal when capped with a carboxylic acid ligand, whereas for the CdS QDs, better adhesion was observed for amine capped ligand shells. When using TiO2 nanocrystals, dye‐sensitized with a phosphonated bipyridine Ru(II) dye, photocurrents are observed that are dependent on the redox state of the decaheme, confirming that electrons are transferred from the TiO2 nanocrystals to the surface via the decaheme conduit. In contrast, when CdS NPs are used, photocurrents are not dependent on the redox state of the decaheme, consistent with a model in which electron transfer from CdS to the photoanode bypasses the decaheme protein. These results illustrate that although the organic shell of NPs nanoparticles crucially affects coupling with proteinaceous material, the coupling can be difficult to predict or engineer.
Archive | 2018
Erwin Reisner; Moritz F. Kuehnel; Constantin Sahm; Gaia Neri; Jonathan R. I. Lee; Katherine L. Orchard; Alexander J. Cowan
Raw Data supporting article: ZnSe qantum dots modified with a Ni(cylam) catalyst for efficient visible-light driven CO2 reduction in water
Archive | 2017
Katherine L. Orchard; Daisuke Hojo; Katarzyna Sokol; M-J Chan; Naoki Asao; Tadafumi Adschiri; Erwin Reisner
We gratefully acknowledge financial support by the EPSRC and World Premier International Research Center Initiative, MEXT, Japan.