Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Katherine L. Widdowson is active.

Publication


Featured researches published by Katherine L. Widdowson.


Journal of Biological Chemistry | 1998

Identification of a Potent, Selective Non-peptide CXCR2 Antagonist That Inhibits Interleukin-8-induced Neutrophil Migration

John R. White; Judithann M. Lee; Peter R. Young; Robert P. Hertzberg; Anthony J. Jurewicz; Margery A. Chaikin; Katherine L. Widdowson; James J. Foley; Lenox D. Martin; Don E. Griswold; Henry M. Sarau

Interleukin-8 (IL-8) and closely related Glu-Leu-Arg (ELR) containing CXC chemokines, including growth-related oncogene (GRO)α, GROβ, GROγ, and epithelial cell-derived neutrophil-activating peptide-78 (ENA-78), are potent neutrophil chemotactic and activating peptides, which are proposed to be major mediators of inflammation. IL-8 activates neutrophils by binding to two distinct seven-transmembrane (7-TMR) G-protein coupled receptors CXCR1 (IL-8RA) and CXCR2 (IL-8RB), while GROα, GROβ, GROγ, and ENA-78 bind to and activate only CXCR2. A chemical lead, which selectively inhibited CXCR2 was discovered by high throughput screening and chemically optimized. SB 225002 (N-(2-hydroxy-4-nitrophenyl)-N′-(2-bromophenyl)urea) is the first reported potent and selective non-peptide inhibitor of a chemokine receptor. It is an antagonist of 125I-IL-8 binding to CXCR2 with an IC50 = 22 nm. SB 225002 showed >150-fold selectivity over CXCR1 and four other 7-TMRs tested. In vitro, SB 225002 potently inhibited human and rabbit neutrophil chemotaxis induced by both IL-8 and GROα. In vivo, SB 225002 selectively blocked IL-8-induced neutrophil margination in rabbits. The present findings suggest that CXCR2 is responsible for neutrophil chemotaxis and margination induced by IL-8. This selective antagonist will be a useful tool compound to define the role of CXCR2 in inflammatory diseases where neutrophils play a major role.


Journal of Immunology | 2002

A Potent and Selective Nonpeptide Antagonist of CXCR2 Inhibits Acute and Chronic Models of Arthritis in the Rabbit

Patricia L. Podolin; Brian Bolognese; James J. Foley; Dulcie B. Schmidt; Peter T. Buckley; Katherine L. Widdowson; Qi Jin; John R. White; Judithann M. Lee; Richard B. Goodman; Tonja R. Hagen; Osamu Kajikawa; Lisa A. Marshall; Douglas W. P. Hay; Henry M. Sarau

Much evidence implicates IL-8 as a major mediator of inflammation and joint destruction in rheumatoid arthritis. The effects of IL-8 and its related ligands are mediated via two receptors, CXCR1 and CXCR2. In the present study, we demonstrate that a potent and selective nonpeptide antagonist of human CXCR2 potently inhibits 125I-labeled human IL-8 binding to, and human IL-8-induced calcium mobilization mediated by, rabbit CXCR2 (IC50 = 40.5 and 7.7 nM, respectively), but not rabbit CXCR1 (IC50 = >1000 and 2200 nM, respectively). These data suggest that the rabbit is an appropriate species in which to examine the anti-inflammatory effects of a human CXCR2-selective antagonist. In two acute models of arthritis in the rabbit induced by knee joint injection of human IL-8 or LPS, and a chronic Ag (OVA)-induced arthritis model, administration of the antagonist at 25 mg/kg by mouth twice a day significantly reduced synovial fluid neutrophils, monocytes, and lymphocytes. In addition, in the more robust LPS- and OVA-induced arthritis models, which were characterized by increased levels of proinflammatory mediators in the synovial fluid, TNF-α, IL-8, PGE2, leukotriene B4, and leukotriene C4 levels were significantly reduced, as was erythrocyte sedimentation rate, possibly as a result of the observed decreases in serum TNF-α and IL-8 levels. In vitro, the antagonist potently inhibited human IL-8-induced chemotaxis of rabbit neutrophils (IC50 = 0.75 nM), suggesting that inhibition of leukocyte migration into the knee joint is a likely mechanism by which the CXCR2 antagonist modulates disease.


Bioorganic & Medicinal Chemistry Letters | 2001

1,3-Biarylureas as Selective Non-peptide Antagonists of the Orexin-1 Receptor

Roderick Alan Porter; Wai N. Chan; Steven Coulton; Amanda Johns; Michael S. Hadley; Katherine L. Widdowson; Jeffrey C. Jerman; Stephen J Brough; Martyn C. Coldwell; Darren Smart; A. Frances Jewitt; Phillip Jeffrey; Nigel E. Austin

This communication reports SARs for the first orexin-1 receptor antagonist series of 1-aryl-3-quinolin-4-yl and 1-aryl-3-naphthyridin-4-yl ureas. One of these compounds, 31 (SB-334867), has excellent selectivity for the orexin-1 receptor, blood-brain barrier permeability and shows in vivo activity following ip dosing.


British Journal of Pharmacology | 2005

Nonpeptidic urotensin-II receptor antagonists I: in vitro pharmacological characterization of SB-706375

Stephen A. Douglas; David J. Behm; Nambi Aiyar; Diane Naselsky; Jyoti Disa; David P. Brooks; Eliot H. Ohlstein; John G Gleason; Henry M. Sarau; James J. Foley; Peter T. Buckley; Dulcie B. Schmidt; William E. Wixted; Katherine L. Widdowson; Graham J. Riley; Jian Jin; Timothy F. Gallagher; Stanley J. Schmidt; Lance H. Ridgers; Lisa T. Christmann; Richard M. Keenan; Steven D. Knight; Dashyant Dhanak

1 SB‐706375 potently inhibited [125I]hU‐II binding to both mammalian recombinant and ‘native’ UT receptors (Ki 4.7±1.5 to 20.7±3.6 nM at rodent, feline and primate recombinant UT receptors and Ki 5.4±0.4 nM at the endogenous UT receptor in SJRH30 cells). 2 Prior exposure to SB‐706375 (1 μM, 30 min) did not alter [125I]hU‐II binding affinity or density in recombinant cells (KD 3.1±0.4 vs 5.8±0.9 nM and Bmax 3.1±1.0 vs 2.8±0.8 pmol mg−1) consistent with a reversible mode of action. 3 The novel, nonpeptidic radioligand [3H]SB‐657510, a close analogue of SB‐706375, bound to the monkey UT receptor (KD 2.6±0.4 nM, Bmax 0.86±0.12 pmol mg−1) in a manner that was inhibited by both U‐II isopeptides and SB‐706375 (Ki 4.6±1.4 to 17.6±5.4 nM) consistent with the sulphonamides and native U‐II ligands sharing a common UT receptor binding domain. 4 SB‐706375 was a potent, competitive hU‐II antagonist across species with pKb 7.29–8.00 in HEK293‐UT receptor cells (inhibition of [Ca2+]i‐mobilization) and pKb 7.47 in rat isolated aorta (inhibition of contraction). SB‐706375 also reversed tone established in the rat aorta by prior exposure to hU‐II (Kapp∼20 nM). 5 SB‐706375 was a selective U‐II antagonist with 100‐fold selectivity for the human UT receptor compared to 86 distinct receptors, ion channels, enzymes, transporters and nuclear hormones (Ki/IC50>1 μM). Accordingly, the contractile responses induced in isolated aortae by KCl, phenylephrine, angiotensin II and endothelin‐1 were unaltered by SB‐706375 (1 μM). 6 In summary, SB‐706375 is a high‐affinity, surmountable, reversible and selective nonpeptide UT receptor antagonist with cross‐species activity that will assist in delineating the pathophysiological actions of U‐II in mammals.


Journal of Medicinal Chemistry | 2009

Discovery of novel 1-azoniabicyclo[2.2.2]octane muscarinic acetylcholine receptor antagonists.

Dramane I. Laine; Brent W. Mccleland; Sonia M Thomas; Christopher E. Neipp; Brian Underwood; Jeremy Dufour; Katherine L. Widdowson; Michael R. Palovich; Frank E. Blaney; James J. Foley; Edward F. Webb; Mark A. Luttmann; Miriam Burman; Kristen E. Belmonte; Michael Salmon

A novel 4-hydroxyl(diphenyl)methyl substituted quinuclidine series was discovered as a very promising class of muscarinic antagonists. The structure-activity relationships of the connectivity of the diphenyl moiety to the quinuclidine core and around the ring nitrogen side chain are described. Computational docking studies using an homology model of the M(3) receptor readily explained the observed structure-activity relationship of the various compounds. Compound 14o was identified as a very potent, slowly reversible M(3) antagonist with a very long in vivo duration of bronchoprotection.


Bioorganic & Medicinal Chemistry Letters | 2009

Camphor sulfonamide derivatives as novel, potent and selective CXCR3 antagonists.

Yonghui Wang; Jakob Busch-Petersen; Feng Wang; Terence J. Kiesow; Todd L. Graybill; Jian Jin; Zheng Yang; James J. Foley; Gerald E. Hunsberger; Dulcie B. Schmidt; Henry M. Sarau; Elizabeth A. Capper-Spudich; Zining Wu; Laura S. Fisher; Michael S. McQueney; Ralph A. Rivero; Katherine L. Widdowson

A series of N-arylpiperazine camphor sulfonamides was discovered as novel CXCR3 antagonists. The synthesis, structure-activity relationships, and optimization of the initial hit that resulted in the identification of potent and selective CXCR3 antagonists are described.


Bioorganic & Medicinal Chemistry Letters | 2001

Discovery of potent and selective phenylalanine derived CCR3 antagonists. Part 1.

Dashyant Dhanak; Lisa T. Christmann; Michael G. Darcy; Anthony J. Jurewicz; Richard M. Keenan; Judithann M. Lee; Henry M. Sarau; Katherine L. Widdowson; John R. White

The discovery of a series of phenylalanine derived CCR3 antagonists is reported. Parallel, solution-phase library synthesis has been utilized to delineate the structure-activity relationship leading to the synthesis of highly potent, CCR3-selective antagonists.


Synthetic Communications | 2005

A Highly Convergent Synthesis of 2‐Phenyl Quinoline as Dual Antagonists for NK2 and NK3 Receptors

Hongxing Yan; Jeffrey K. Kerns; Qi Jin; Chongjie Zhu; Mary S. Barnette; James F. Callahan; Douglas W. P. Hay; Larry J. Jolivette; Mark A. Luttmann; Henry M. Sarau; Keith W. Ward; Katherine L. Widdowson; Zehong Wan

Abstract A novel and highly convergent synthesis leading to 2‐phenyl‐quinolines has been developed. As demonstrated in the preparation of 6‐fluoro‐3‐(3‐oxo‐piperazin‐1‐ylmethyl)‐2‐phenyl‐quinoline‐4‐carboxylic acid [(S)‐1‐cyclohexyl‐ethyl]‐amide (8), the method provides fascile access to this class of analogues via the common intermediate 7.


Journal of Medicinal Chemistry | 2009

Design, Synthesis, and Structure-Activity Relationship of Tropane Muscarinic Acetylcholine Receptor Antagonists

Dramane I. Laine; Zehong Wan; Hongxing Yan; Chongjie Zhu; Haibo Xie; Wei Fu; Jakob Busch-Petersen; Christopher E. Neipp; Roderick S. Davis; Katherine L. Widdowson; Frank E. Blaney; James E. Foley; Alicia M. Bacon; Edward F. Webb; Mark A. Luttmann; Miriam Burman; Henry M. Sarau; Michael Salmon; Michael R. Palovich; Kristen E. Belmonte

Novel tropane derivatives were characterized as muscarinic acetylcholine receptor antagonists (mAChRs). Through optimization of the structure-activity relationship around the tropane scaffold, the quaternary ammonium salt 34 was identified as a very potent M(3) mAChR antagonist. The compound was functionally active and displayed greater than 24 h duration of action in a mouse model of bronchoconstriction.


Letters in Peptide Science | 1998

The role of the anionic groups in the receptor binding of interleukin-8 antagonists

Katherine L. Widdowson; Hong Nie; Anthony J. Jurewicz; Robert P. Hertzberg; Henry M. Sarau; James J. Foley; Judithann M. Lee; John R. White; Daniel F. Veber

In an effort to determine the role of the acidic group in the receptor binding ofN-(2-hydroxy-4-nitrophenyl)-N′-(phenyl) urea, an interleukin-8B receptor antagonist, its binding and that of several analogs was measured as a function of pH. These titrations indicate that these ureas bind most strongly in their anionic form. Studies of antagonists, with different acidities, demonstrated that the greatest change in binding of each urea occurred around the pK a of the compound being examined. The studies suggest that the increase in binding of the antagonists at higher pH is a result of the increased negative charge on the compounds rather than the effects of pH on the receptor or radioligand.

Collaboration


Dive into the Katherine L. Widdowson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge