Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Katherine Lester is active.

Publication


Featured researches published by Katherine Lester.


Journal of Virology | 2011

Expression and functional characterization of the RIG-I like receptors MDA5 and LGP2 in rainbow trout Oncorhynchus mykiss

Ming Xian Chang; Bertrand Collet; Pin Nie; Katherine Lester; Scott Campbell; Christopher J. Secombes; Jun Zou

ABSTRACT The retinoic acid-inducible gene I (RIG-I)-like receptors (RLR) comprise three homologues: RIG-I, melanoma differentiation-associated gene 5 (MDA5), and laboratory of genetics and physiology 2 (LGP2). They activate the host interferon (IFN) system upon recognition of viral RNA pathogen-associated molecular patterns (PAMPs) in the cytoplasm. Bioinformatic analysis of the sequenced vertebrate genomes suggests that the cytosolic surveillance system is conserved in lower vertebrates, and recent functional studies have confirmed that RIG-I is important to fish antiviral immunity. In this study, we have identified MDA5 and LGP2 homologues from rainbow trout Oncorhynchus mykiss and an additional LGP2 variant with an incomplete C-terminal domain of RIG-I. Trout MDA5 and LGP2 were constitutively produced in fibroblast and macrophage cell lines and upregulated by poly(I:C), recombinant IFN, or infection by RNA viruses (viral hemorrhagic septicemia virus and salmon alphavirus) with a single-stranded positive or negative genome. Overexpression of MDA5 and LGP2 but not of the LGP2 variant resulted in significant accumulation of Mx transcripts in cultured cells, which correlated with a marked enhancement of protection against viral infection. These results demonstrate that both MDA5 and LGP2 are important RLRs in host surveillance against infection of both negative and positive viruses and that the LGP2 variant with a deletion of 54 amino acids at the C terminus acts as a negative regulator for LGP2-elicited antiviral signaling by competing for the viral RNA PAMPs. Interestingly, MDA5 expression was not affected by overexpressed LGP2 in transfected cells and vice versa, suggesting that they likely act in parallel as positive regulators for IFN production.


Journal of Virological Methods | 2012

Development of an in vitro system to measure the sensitivity to the antiviral Mx protein of fish viruses.

Katherine Lester; Malcolm Hall; Katy Urquhart; Suresh Gahlawat; Bertrand Collet

Mx is a structural protein, induced by type I interferon (IFN), with direct antiviral properties. In fish the inherent contribution of Mx protein to viral protection is unknown. The transgenic Chinook salmon embryonic (CHSE)-TOF cell line was genetically modified to express the rainbow trout Mx (rbtMx1) protein under the control of the tetracycline derivative, doxycycline (DOX). Two clones CHSE-TOF-MX8 and CHSE-TOF-MX10 were isolated and characterised by qPCR. The level of resistance to Infectious Pancreatic Necrosis Virus (IPNV), Salmon Alphavirus (SAV), Infectious Haematopoietic Necrosis Virus (IHNV) and Epizootic Haematopoietic Necrosis Virus (EHNV) of the CHSE-TOF, CHSE-TOF-MX8 and CHSE-TOF-MX10 cell lines cultivated with and without DOX was measured. A novel method was established to measure accurately the level of sensitivity of any given viral isolate to Mx protein. IPNV and SAV viruses were highly sensitive to the presence of rbtMx1 in the cells whereas IHNV and EHNV showed partial resistance suggesting contrasting viral evasion strategies between these categories of viruses.


Journal of General Virology | 2014

Deletions in the highly polymorphic region (HPR) of infectious salmon anaemia virus HPR0 haemagglutinin-esterase enhance viral fusion and influence the interaction with the fusion protein.

Mickael Fourrier; Katherine Lester; Even Thoen; Aase B. Mikalsen; Øystein Evensen; Knut Falk; Bertrand Collet; Alastair McBeath

Since the discovery of a non-virulent infectious salmon anaemia virus (ISAV) HPR0 variant, many studies have speculated on the functional role of deletions within the highly polymorphic region (HPR) of genomic segment 6, which codes for the haemagglutinin-esterase (HE) protein. To address this issue, mutant HE proteins with deletions in their HPR were generated from the Scottish HPR0 template (NWM10) and fusion-inducing activity was measured using lipid (octadecyl rhodamine B) and content mixing assays (firefly luciferase). Segment six HPR was found to have a strong influence on ISAV fusion, and deletions in this near-membrane region predominantly increased the fusion-inducing ability of the resulting HE proteins. The position and length of the HPR deletions were not significant factors, suggesting that they may affect fusion non-specifically. In comparison, the amino acid composition of the associated fusion (F) protein was a more crucial criterion. Antibody co-patching and confocal fluorescence demonstrated that the HE and F proteins were highly co-localized, forming defined clusters on the cell surface post-transfection. The binding of erythrocyte ghosts on the attachment protein caused a reduction in the percentage of co-localization, suggesting that ISAV fusion might be triggered through physical separation of the F and HE proteins. In this process, HPR deletion appeared to modulate and reduce the strength of interaction between the two glycoproteins, causing more F protein to be released and activated. This work provides a first insight into the mechanism of virulence acquisition through HPR deletion, with fusion enhancement acting as a major contributing factor.


PLOS ONE | 2015

Dual Mutation Events in the Haemagglutinin-Esterase and Fusion Protein from an Infectious Salmon Anaemia Virus HPR0 Genotype Promote Viral Fusion and Activation by an Ubiquitous Host Protease

Mickael Fourrier; Katherine Lester; Turhan Markussen; Knut Falk; Christopher J. Secombes; Alastair McBeath; Bertrand Collet

In Infectious salmon anaemia virus (ISAV), deletions in the highly polymorphic region (HPR) in the near membrane domain of the haemagglutinin-esterase (HE) stalk, influence viral fusion. It is suspected that selected mutations in the associated Fusion (F) protein may also be important in regulating fusion activity. To better understand the underlying mechanisms involved in ISAV fusion, several mutated F proteins were generated from the Scottish Nevis and Norwegian SK779/06 HPR0. Co-transfection with constructs encoding HE and F were performed, fusion activity assessed by content mixing assay and the degree of proteolytic cleavage by western blot. Substitutions in Nevis F demonstrated that K276 was the most likely cleavage site in the protein. Furthermore, amino acid substitutions at three sites and two insertions, all slightly upstream of K276, increased fusion activity. Co-expression with HE harbouring a full-length HPR produced high fusion activities when trypsin and low pH were applied. In comparison, under normal culture conditions, groups containing a mutated HE with an HPR deletion were able to generate moderate fusion levels, while those with a full length HPR HE could not induce fusion. This suggested that HPR length may influence how the HE primes the F protein and promotes fusion activation by an ubiquitous host protease and/or facilitate subsequent post-cleavage refolding steps. Variations in fusion activity through accumulated mutations on surface glycoproteins have also been reported in other orthomyxoviruses and paramyxoviruses. This may in part contribute to the different virulence and tissue tropism reported for HPR0 and HPR deleted ISAV genotypes.


Journal of Virological Methods | 2013

A method to measure an indicator of viraemia in Atlantic salmon using a reporter cell line

Bertrand Collet; Katy Urquhart; Patricia A. Noguera; Katrine H. Larsen; Katherine Lester; David Smail; D. W. Bruno

RTG-P1 is a transgenic fish cell line producing luciferase under the control of the IFN-induced Mx rainbow trout gene promoter. This cell line was used to measure viraemia of Salmonid alphavirus (SAV), the cause of Salmon Pancreas Disease (SPD), a serious disease in farmed Atlantic salmon. Two SAV genotype 1 (SAV1) isolates were used in this study, F93-125 (tissue-culture adapted, from Ireland) and 4640 (from a field case in Scotland). The kinetics and magnitude of luciferase activity were monitored versus the time of infection. During a direct infection experiment, the induction of luciferase significantly increased 16- and 4-fold after incubation for 6 days with F93-125 at 15 and 20°C, respectively. Filtration and heat treatment experiments demonstrated that the luciferase induction in RTG-P1 was dependent on viral replication. Unlike many cell lines used in fish viral diagnostic, RTG-P1 is not sensitive to salmonid serum, therefore, viraemia could be successfully monitored on serum collected from fish during a cohabitation challenge with 4640 isolate. A peak of viraemia could be detected 16 days post IP inoculation of the shedders. This novel cost-effective method to measure viraemia does not rely on development of cytopathic effect (CPE) in culture, is compatible with non-lethal blood collections in fish and can be used to assign emerging diseases to a viral aetiology.


In Vitro Cellular & Developmental Biology – Animal | 2011

Establishment of a Chinook salmon cell line with an inducible gene expression system

Bertrand Collet; Katherine Lester

We have isolated a stable recombinant cell line CHSE-TOF5 derived from the Chinook salmon (Oncorhynchus tshawytscha) embryo cells for use as an inducible expression system. The cells were transfected with the pTet-Off plasmid from the Tet On/Off Clontech system, carrying a G418 resistance gene. Several G418-resistant clones were subcultured and characterised by quantitative PCR (qPCR) and by transient transfection. The level of expression of transcriptional activator was measured by qPCR in a number of isolated clones, and transient transfection with a pTRE2-hyg-LUC plasmid was used to evaluate the inducibility of these clones. A clone was selected for its relative fast cell growth and good level of inducibility. This genetically engineered cell line is a valuable tool for the fish research community especially in research areas investigating the biological function of proteins from fish or fish pathogens.


Journal of Biotechnology | 2011

Establishment of an Atlantic salmon kidney cell line with an inducible gene expression system.

Bertrand Collet; Katherine Lester

A stable recombinant Atlantic Salmon Kidney cell line ASK for use as an inducible expression system was isolated, cloned and characterised. The cells were transfected with the pTet-Off plasmid from the Tet On/Off Clontech system, carrying a G418 resistance gene. Several G418-resistant clones were sub-cultured and characterised by qPCR and by transient transfection. The level of expression of transcriptional activator (tTA) was measured by qPCR in a number of isolated clones. Transient transfection with a pTRE2-hyg-LUC plasmid was used to evaluate the inducibility of these clones. Two clones were chosen for their compromise between cell growth and inducibility. This genetically engineered cell line is a valuable tool for the fish research community especially in research areas investigating the biological function of viral proteins.


PLOS ONE | 2017

Atlantic salmon cardiac primary cultures: An in vitro model to study viral host pathogen interactions and pathogenesis

Patricia A Noguera; Bianka Grunow; Matthias Klinger; Katherine Lester; Bertrand Collet; Jorge Del-Pozo

Development of Salmon Cardiac Primary Cultures (SCPCs) from Atlantic salmon pre-hatch embryos and their application as in vitro model for cardiotropic viral infection research are described. Producing SCPCs requires plating of trypsin dissociated embryos with subsequent targeted harvest from 24h up to 3 weeks, of relevant tissues after visual identification. SCPCs are then transferred individually to chambered wells for culture in isolation, with incubation at 15–22°. SCPCs production efficiency was not influenced by embryo’s origin (0.75/ farmed or wild embryo), but mildly influenced by embryonic developmental stage (0.3 decline between 380 and 445 accumulated thermal units), and strongly influenced by time of harvest post-plating (0.6 decline if harvested after 72 hours). Beating rate was not significantly influenced by temperature (15–22°) or age (2–4 weeks), but was significantly lower on SCPCs originated from farmed embryos with a disease resistant genotype (F = 5.3, p<0.05). Two distinct morphologies suggestive of an ex vivo embryonic heart and a de novo formation were observed sub-grossly, histologically, ultra-structurally and with confocal microscopy. Both types contained cells consistent with cardiomyocytes, endothelium, and fibroblasts. Ageing of SCPCs in culture was observed with increased auto fluorescence in live imaging, and as myelin figures and cellular degeneration ultra-structurally. The SCPCs model was challenged with cardiotropic viruses and both the viral load and the mx gene expression were measurable along time by qPCR. In summary, SCPCs represent a step forward in salmon cardiac disease research as an in vitro model that partially incorporates the functional complexity of the fish heart.


Developmental and Comparative Immunology | 2018

Engineered cell lines for fish health research

Bertrand Collet; Catherine Collins; Katherine Lester

As fish farming continues to increase worldwide, the related research areas of fish disease and immunology are also expanding, aided by the revolution in access to genomic information and molecular technology. The genomes of most fish species of economic importance are now available and annotation based on sequence homology with characterised genomes is underway. However, while useful, functional homology is more difficult to determine, there being a lack of widely distributed and well characterised reagents such as monoclonal antibodies, traditionally used in mammalian studies, to help with confirming functions and cellular interactions of fish molecules. In this context, fish cell lines and the possibility of their genetic engineering offer good prospects for studying functional genomics with respect to fish diseases. In this review, we will give an overview of available permanently genetically engineered fish cell lines, as cell-based reporter systems or platforms for expression of endogenous immune or pathogen genes, to investigate interactions and function. The advantages of such systems and the technical challenge for their development will be discussed.


Veterinary Microbiology | 2016

Susceptibility of goldsinny wrasse, Ctenolabrus rupestris L. (Labridae), to viral haemorrhagic septicaemia virus (VHSV) genotype III: Experimental challenge and pathology.

Iveta Matejusova; P.A. Noguera; Malcolm Hall; Alastair McBeath; Katy Urquhart; Simons J; M.J. Fordyce; Katherine Lester; Y.-M. Ho; W. Murray; D.W. Bruno

Cleaner fish, such as wrasse, are being increasingly used to combat the sea lice infestation of Atlantic salmon (Salmo salar L.) in many European countries. To determine susceptibility of the goldsinny wrasse (Ctenolabrus rupestris L.) and pathogenesis of the viral haemorrhagic septicaemia virus (VHSV) genotype III isolate 12-654, previously associated with VHSV infection in the Shetland Islands in 2012, fish were experimentally challenged by intraperitoneal injection (IP), bath immersion and cohabitation routes. Cumulative proportion of moribund wrasse reached 17% following the virus immersion challenge while by the IP-route moribunds exceeded 50% within 14days post-challenge. Typical signs of VHS as reported in rainbow trout (Oncorhynchus mykiss), were not observed in moribund goldsinny wrasse. The most pronounced histopathological changes, consistent regardless of the route of infection, were observed within the heart and included atrium myofibril degeneration, focal infiltration and multifocal necrosis, with prominent swelling of the endocardium and occasional detachment. Pathological changes in the atrium were associated with presence of the viral antigen as confirmed by a positive immunohistochemical staining. Virus clearance and heart tissue recovery were noted although further experiments are required to confirm these observations. The results of a cohabitation experiment confirmed that goldsinny wrasse shed viable virus and therefore represent a risk of virus transmission to other VHSV susceptible species. Similarities between the pathology in goldsinny wrasse induced through the controlled experimental challenges and that of wrasse spp. from an infection occurrence in Shetland are discussed.

Collaboration


Dive into the Katherine Lester's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge