Katherine Mah
University of Toronto
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Katherine Mah.
International Journal of Radiation Oncology Biology Physics | 2002
Katherine Mah; Curtis Caldwell; Yee C Ung; Cyril Danjoux; Judith Balogh; S.Nimu Ganguli; Lisa Ehrlich; Romeo Tirona
PURPOSE To prospectively study the impact of coregistering (18)F-fluoro-deoxy-2-glucose hybrid positron emission tomographic (FDG-PET) images with CT images on the planning target volume (PTV), target coverage, and critical organ dose in radiation therapy planning of non-small-cell lung carcinoma. METHODS AND MATERIALS Thirty patients with poorly defined tumors on CT, referred for radical radiation therapy, underwent both FDG-PET and CT simulation procedures on the same day, in radiation treatment position. Image sets were coregistered using external fiducial markers. Three radiation oncologists independently defined the gross tumor volumes, using first CT data alone and then coregistered CT and FDG-PET data. Standard margins were applied to each gross tumor volume to generate a PTV, and standardized treatment plans were designed and calculated for each PTV. Dose-volume histograms were used to evaluate the relative effect of FDG information on target coverage and on normal tissue dose. RESULTS In 7 of 30 (23%) cases, FDG-PET information changed management strategy from radical to palliative. In 5 of the remaining 23 (22%) cases, new FDG-avid nodes were found within 5 cm of the primary tumor and were included in the PTV. The PTV defined using coregistered CT and FDG-PET would have been poorly covered by the CT-based treatment plan in 17--29% of cases, depending on the physician, implying a geographic miss had only CT information been available. The effect of FDG-PET on target definition varied with the physician, leading to a reduction in PTV in 24-70% of cases and an increase in 30-76% of cases. The relative change in PTV ranged from 0.40 to 1.86. On average, FDG-PET information led to a reduction in spinal cord dose but not in total lung dose, although large differences in dose to the lung were seen for a few individuals. CONCLUSION The coregistration of planning CT and FDG-PET images made significant alterations to patient management and to the PTV. Ultimately, changes to the PTV resulted in changes to the radiation treatment plans for the majority of cases. Where possible, we would recommend that FDG-PET data be integrated into treatment planning of non-small-cell lung carcinoma, particularly for three-dimensional conformal techniques.
International Journal of Radiation Oncology Biology Physics | 2001
Curtis Caldwell; Katherine Mah; Yee C Ung; Cyril Danjoux; Judith Balogh; S.Nimu Ganguli; Lisa Ehrlich
PURPOSE To quantify interobserver variation in gross tumor volume (GTV) localization using CT images for patients with non-small-cell lung carcinoma and poorly defined tumors on CT and to determine whether variability would be reduced if coregistered 2-[18F]fluoro-2-deoxy-d-glucose (FDG)-hybrid positron emission tomography (PET) with CT images were used. METHODS AND MATERIALS Prospectively, 30 patients with non-small-cell lung carcinoma had CT and FDG-hybrid PET examinations in radiation treatment position on the same day. Images were coregistered using eight fiducial markers. Guidelines were established for contouring GTVs. Three radiation oncologists performed localization independently. The coefficient of variation was used to assess interobserver variability. RESULTS The size of the GTV defined showed great variation among observers. The mean ratios of largest to smallest GTV were 2.31 and 1.56 for CT only and for CT/FDG coregistered data, respectively. The addition of PET reduced this ratio in 23 of 30 cases and increased it in 7. The mean coefficient of variation for GTV based on the combined modalities was significantly smaller (p < 0.01) than that for CT data only. CONCLUSIONS High observer variability in CT-based definition of the GTV can occur. A more consistent definition of the GTV can often be obtained if coregistered FDG-hybrid PET images are used.
IEEE Transactions on Medical Imaging | 2009
H Yu; Curtis Caldwell; Katherine Mah; Daniel Mozeg
Coregistered fluoro-deoxy-glucose (FDG) positron emission tomography/computed tomography (PET/CT) has shown potential to improve the accuracy of radiation targeting of head and neck cancer (HNC) when compared to the use of CT simulation alone. The objective of this study was to identify textural features useful in distinguishing tumor from normal tissue in head and neck via quantitative texture analysis of coregistered 18 F-FDG PET and CT images. Abnormal and typical normal tissues were manually segmented from PET/CT images of 20 patients with HNC and 20 patients with lung cancer. Texture features including some derived from spatial grey-level dependence matrices (SGLDM) and neighborhood gray-tone-difference matrices (NGTDM) were selected for characterization of these segmented regions of interest (ROIs). Both K nearest neighbors (KNNs) and decision tree (DT)-based KNN classifiers were employed to discriminate images of abnormal and normal tissues. The area under the curve (AZ) of receiver operating characteristics (ROC) was used to evaluate the discrimination performance of features in comparison to an expert observer. The leave-one-out and bootstrap techniques were used to validate the results. The AZ of DT-based KNN classifier was 0.95. Sensitivity and specificity for normal and abnormal tissue classification were 89% and 99%, respectively. In summary, NGTDM features such as PET coarseness, PET contrast, and CT coarseness extracted from FDG PET/CT images provided good discrimination performance. The clinical use of such features may lead to improvement in the accuracy of radiation targeting of HNC.
International Journal of Radiation Oncology Biology Physics | 1998
Laura A. Dawson; Katherine Mah; Edmee Franssen; Gerard Morton
PURPOSE To quantify the variability in prostate and seminal vesicle position during a course of external beam radiotherapy, and to measure the proportion of target variability due to setup error. METHODS AND MATERIALS Forty-four weekly planning computerized tomography (CT) studies were obtained on six patients undergoing radiotherapy for prostate cancer. All patients were scanned in the radiotherapy treatment position, supine with an empty bladder, with no immobilization device. All organs were outlined on 3-mm-thick axial CT images. Anterior and lateral beams eye view digitally reconstructed radiographs and multiplanar reformatted images were generated. The position of the prostate and seminal vesicles relative to the isocenter location as set that day was recorded for each CT study. Target position relative to a bony landmark was measured to determine the relative contribution of setup error to the target position variability. RESULTS The seminal vesicle and prostate position variability was most significant in the anterior-posterior (AP) direction, followed by cranial-caudal (CC) and mediolateral (ML) directions. Setup error contributed significantly to the total target position variability. Rectal filling was associated with a trend to anterior movement of the prostate, whereas bladder filling was not associated with any trends. Although most deviations from the target position determined at the initial planning CT scan were within 10 mm, deviations as large as 15 mm and 19 mm were seen in the prostate and seminal vesicles respectively. Target position variations were evenly distributed around the initial target position for some patient studies, but unpredictable patterns were also seen. From a simulation based on the observed variability in target position, the AP, CC, and ML planning target volume (PTV) borders around the clinical target volume (CTV) required for target coverage with 95% certainty are 12.4 mm, 10.3 mm, and 5.6 mm respectively for the prostate and 13.8 mm, 8.6 mm, and 3.9 mm respectively for the seminal vesicles. CONCLUSION Target position variability is significant during prostate radiotherapy, requiring large PTV borders around the CTV. This target position variability may be potentially reduced by improving the setup accuracy.
International Journal of Radiation Oncology Biology Physics | 2011
Melanie Davidson; Samuel J. Blake; Deidre L. Batchelar; Patrick Cheung; Katherine Mah
PURPOSE To quantify differences in treatment delivery efficiency and dosimetry between step-and-shoot intensity-modulated radiotherapy (IMRT), volumetric modulated arc therapy (VMAT), and helical tomotherapy (HT) for prostate treatment. METHODS AND MATERIALS Twenty-five prostate cancer patients were selected retrospectively for this planning study. Treatment plans were generated for: prostate alone (n = 5), prostate + seminal vesicles (n = 5), prostate + seminal vesicles + pelvic lymph nodes (n = 5), prostate bed (n = 5), and prostate bed + pelvic lymph nodes (n = 5). Target coverage, dose homogeneity, integral dose, monitor units (MU), and sparing of organs at risk (OAR) were compared across techniques. Time required to deliver each plan was measured. RESULTS The dosimetric quality of IMRT, VMAT, and HT plans were comparable for target coverage (planning target volume V95%, clinical target volume V100% all >98.7%) and sparing of organs at risk (OAR) for all treatment groups. Although HT resulted in a slightly higher integral dose and mean doses to the OAR, it yielded a lower maximum dose to all OAR examined. VMAT resulted in reductions in treatment times over IMRT (mean = 75%) and HT (mean = 70%). VMAT required 15-38% fewer monitor units than IMRT over all treatment volumes, with the reduction per fraction ranging from 100-423 MU from the smallest to largest volumes. CONCLUSIONS VMAT improves efficiency of delivery for equivalent dosimetric quality as IMRT and HT across various prostate cancer treatment volumes in the intact and postoperative settings.
International Journal of Radiation Oncology Biology Physics | 1982
R. Mark Henkelman; Katherine Mah
Abstract Repeated computed tomographic (CT) scanning has been used to assess the effect of quiet breathing on the dosimetry in radiation therapy of the thorax. Density variations as great as 80 CT numbers (8 % of the density of water) have been observed between the inspiration and expiration limits of quiet breathing, and movement of anatomical points of greater than 1 cm have been measured. However, dose variations around the breathing cycle are generally less than 5% and the true time-averaged dose is well approximated by a static plan at any point within the cycle. Treatment plans based on “blurred” slow CT scans give a comparable accuracy to those performed at the mid-point of quiet respiration.
International Journal of Radiation Oncology Biology Physics | 1998
Katherine Mah; Cyril Danjoux; Sharan Manship; Nadiya Makhani; Marlene Cardoso; Katharina E. Sixel
PURPOSE To reduce the time required for planning and simulating craniospinal fields through the use of a computed tomography (CT) simulator and virtual simulation, and to improve the accuracy of field and shielding placement. METHODS AND MATERIALS A CT simulation planning technique was developed. Localization of critical anatomic features such as the eyes, cribriform plate region, and caudal extent of the thecal sac are enhanced by this technique. Over a 2-month period, nine consecutive pediatric patients were simulated and planned for craniospinal irradiation. Four patients underwent both conventional simulation and CT simulation. Five were planned using CT simulation only. The accuracy of CT simulation was assessed by comparing digitally reconstructed radiographs (DRRs) to portal films for all patients and to conventional simulation films as well in the first four patients. RESULTS Time spent by patients in the CT simulation suite was 20 min on average and 40 min maximally for those who were noncompliant. Image acquisition time was <10 min in all cases. In the absence of the patient, virtual simulation of all fields took 20 min. The DRRs were in agreement with portal and/or simulation films to within 5 mm in five of the eight cases. Discrepancies of > or =5 mm in the positioning of the inferior border of the cranial fields in the first three patients were due to a systematic error in CT scan acquisition and marker contouring which was corrected by modifying the technique after the fourth patient. In one patient, the facial shield had to be moved 0.75 cm inferiorly owing to an error in shield construction. CONCLUSIONS Our analysis showed that CT simulation of craniospinal fields was accurate. It resulted in a significant reduction in the time the patient must be immobilized during the planning process. This technique can improve accuracy in field placement and shielding by using three-dimensional CT-aided localization of critical and target structures. Overall, it has improved staff efficiency and resource utilization.
Journal of Head Trauma Rehabilitation | 2016
Anne Hunt; Katherine Mah; Nick Reed; Lisa Engel; Michelle Keightley
Objective:The purpose of this article is to synthesize and appraise the evidence regarding the use of oculomotor-based vision assessment to identify and monitor recovery from mild traumatic brain injury (mTBI). Specific objectives are to (1) identify changes in oculomotor-based vision following mTBI; (2) distinguish methods of assessment; (3) appraise the level and quality of evidence; and, if warranted, (4) determine clinical recommendations for assessment. Methods:A systematic review was undertaken to identify and appraise relevant literature. A search was conducted of 7 databases of peer-reviewed literature from January 1990 to January 2015. Articles were included if study populations were clearly identified as having mTBI and used an assessment of oculomotor-based vision. Articles with pooled data (eg, mTBI and stroke), addressing afferent visual function (eg, visual field deficits) or using single case designs, were excluded. Results:Twenty articles were selected for inclusion. Exploratory findings suggest that measurements of saccades, smooth pursuit, and vergence are useful in detecting changes associated with mTBI. Assessment methods included eye tracker protocols, optometric assessment, and the King-Devick test. Conclusion:The strength of this evidence is not yet sufficient to warrant clinical recommendations. Research using rigorous methods is required to develop reliable, valid, and clinically useful assessment protocols.
International Journal of Molecular Imaging | 2013
Mike Sattarivand; Curtis Caldwell; Ian Poon; Hany Soliman; Katherine Mah
Purpose. Quantitative PET response assessment during therapy requires regions of interest (ROI). Commonly, a fixed-size ROI is placed at the maximum uptake point in the pretreatment study. For intratreatment, the ROI is placed either at the maximum uptake point (ROIpeak) or at the same location as the pretreatment ROI (ROIsame). We have evaluated the effects of the ROI placement on response assessment. Methods. PET scans of 15 head and neck cancer patients were used to evaluate the effects of the two ROI methods on response assessment. Results. The average intratreatment ROIpeak uptake was 13.4% higher than the ROIsame uptake (range −14% to 38%). The average relative change in ROIpeak uptake was 7.9% lower than ROIsame uptake (range −5% to 36%), resulting in ambiguous tumour classification in 19% of the tumours. Conclusion. Quantitative PET response assessment using a fixed-size ROI is sensitive the ROI placement. The difference between ROIpeak and ROIsame could be substantial resulting in ambiguous response assessment. Although the fixed-size ROI is simple to implement, it is also prone to the limitations and should be used with caution. Clinical trial data are necessary to establish reliable thresholds for fixed-size ROI techniques and to evaluate their efficacy for response assessment.
international conference of the ieee engineering in medicine and biology society | 2000
Curtis Caldwell; Katherine Mah; Yee C Ung; Cyril Danjoux; Judith Balogh
Conventional radiotherapy for non-small cell lung cancer (NSCLC) is often unable to achieve local control. For this reason, 3DCRT with dose escalation is being investigated as a means of improving outcome. It is essential to accurately define the gross tumour volume (GTV) for 3DCRT to succeed. Unfortunately, anatomic imaging techniques such as CT or MRI are often unable to distinguish tumour from normal tissue. Functional imaging with /sup 18/F-FDG PET has the potential to define the GTV more accurately. A prospective study of the use of FDG-hybrid-PET images fused to CT simulation images in radiotherapy treatment planning for NSCLC is described. In a significant fraction of cases, the addition of functional information produces dramatic changes both in the GTV and in dose volume histograms for normal tissues.