Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Katherine W. Ferrara is active.

Publication


Featured researches published by Katherine W. Ferrara.


IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control | 2000

Experimental and theoretical evaluation of microbubble behavior: effect of transmitted phase and bubble size

Karen E. Morgan; John S. Allen; Paul A. Dayton; James Chomas; A.L. Klibaov; Katherine W. Ferrara

Ultrasound contrast agents provide new opportunities to image vascular volume and flow rate directly. To accomplish this goal, new pulse sequences can be developed to detect specifically the presence of a microbubble or group of microbubbles. We consider a new scheme to detect the presence of contrast agents in the body by examining the effect of transmitted phase on the received echoes from single bubbles. In this study, three tools are uniquely combined to aid in the understanding of the effects of transmission parameters and bubble radius on the received echo. These tools allow for optical measurement of radial oscillations of single bubbles during insonation, acoustical study of echoes from single contrast agent bubbles, and the comparison of these experimental observations with theoretical predictions. A modified Herring equation with shell terms is solved for the time-dependent bubble radius and wall velocity, and these outputs are used to formulate the predicted echo from a single encapsulated bubble. The model is validated by direct comparison of the predicted radial oscillations with those measured optically. The transient bubble response is evaluated with a transducer excitation consisting of one-cycle pulses with a center frequency of 2.4-MHz. The experimental and theoretical results are in good agreement and predict that the transmission of two pulses with opposite polarity will yield similar time domain echoes with the first significant portion of the echo generated when the rarefactional half-cycle reaches the bubble.


IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control | 1999

Optical and acoustical observations of the effects of ultrasound on contrast agents

Paul A. Dayton; Karen E. Morgan; Alexander L. Klibanov; Gary H. Brandenburger; Katherine W. Ferrara

Optimal use of encapsulated microbubbles for ultrasound contrast agents and drug delivery requires an understanding of the complex set of phenomena that affect the contrast agent echo and persistence. With the use of a video microscopy system coupled to either an ultrasound flow phantom or a chamber for insonifying stationary bubbles, we show that ultrasound has significant effects on encapsulated microbubbles. In vitro studies show that a train of ultrasound pulses can alter the structure of an albumin-shelled bubble, initiate various mechanisms of bubble destruction or produce aggregation that changes the echo spectrum. In this analysis, changes observed optically are compared with those observed acoustically for both albumin and lipid-shelled agents. We show that, when insonified with a narrowband pulse at an acoustic pressure of several hundred kPa, a phospholipid-shelled bubble can undergo net radius fluctuations of at least 15%; and an albumin-shelled bubble initially demonstrates constrained expansion and contraction. If the albumin shell contains air, the shell may not initially experience surface tension; therefore, the echo changes more significantly with repeated pulsing. A set of observations of contrast agent destruction is presented, which includes the slow diffusion of gas through the shell and formation of a shell defect followed by rapid diffusion of gas into the surrounding liquid. These observations demonstrate that the low-solubility gas used in these agents can persist for several hundred milliseconds in solution. With the transmission of a high-pulse repetition rate and a low pressure, the echoes from, contrast agents can be affected by secondary radiation force. Secondary radiation force is an attractive force for these experimental conditions, creating aggregates with distinct echo characteristics and extended persistence. The scattered echo from an aggregate is several times stronger and more narrowband than echoes from individual bubbles.


Physics in Medicine and Biology | 2009

Ultrasound contrast microbubbles in imaging and therapy: physical principles and engineering

Shengping Qin; Charles F. Caskey; Katherine W. Ferrara

Microbubble contrast agents and the associated imaging systems have developed over the past 25 years, originating with manually-agitated fluids introduced for intra-coronary injection. Over this period, stabilizing shells and low diffusivity gas materials have been incorporated in microbubbles, extending stability in vitro and in vivo. Simultaneously, the interaction of these small gas bubbles with ultrasonic waves has been extensively studied, resulting in models for oscillation and increasingly sophisticated imaging strategies. Early studies recognized that echoes from microbubbles contained frequencies that are multiples of the microbubble resonance frequency. Although individual microbubble contrast agents cannot be resolved-given that their diameter is on the order of microns-nonlinear echoes from these agents are used to map regions of perfused tissue and to estimate the local microvascular flow rate. Such strategies overcome a fundamental limitation of previous ultrasound blood flow strategies; the previous Doppler-based strategies are insensitive to capillary flow. Further, the insonation of resonant bubbles results in interesting physical phenomena that have been widely studied for use in drug and gene delivery. Ultrasound pressure can enhance gas diffusion, rapidly fragment the agent into a set of smaller bubbles or displace the microbubble to a blood vessel wall. Insonation of a microbubble can also produce liquid jets and local shear stress that alter biological membranes and facilitate transport. In this review, we focus on the physical aspects of these agents, exploring microbubble imaging modes, models for microbubble oscillation and the interaction of the microbubble with the endothelium.


Journal of Biomedical Optics | 2001

Threshold of fragmentation for ultrasonic contrast agents.

James Chomas; Paul A. Dayton; Donovan May; Katherine W. Ferrara

Ultrasound contrast agents are small microbubbles that can be readily destroyed with sufficient acoustic pressure, typically, at a frequency in the low megaHertz range. Microvascular flow rate may be estimated by destroying the contrast agent in a vascular bed, and estimating the rate of flow of contrast agents back into the vascular bed. Characterization of contrast agent destruction provides important information for the design of this technique. In this paper, high-speed optical observation of an ultrasound contrast agent during acoustic insonation is performed. The resting diameter is shown to be a significant parameter in the prediction of microbubble destruction, with smaller diameters typically correlated with destruction. Pressure, center frequency, and transmission phase are each shown to have a significant effect on the fragmentation threshold. A linear prediction for the fragmentation threshold as a function of pressure, when normalized by the resting diameter, has a rate of change of 300 kPa/microm for the range of pressures from 310 to 1200 kPa, and a two-cycle excitation pulse with a center frequency of 2.25 MHz. A linear prediction for the fragmentation threshold as a function of frequency, when normalized by the resting diameter, has a rate of change of -1.2 MHz/microm for a transmission pressure of 800 kPa, and a two-cycle excitation pulse with a range of frequencies from 1 to 5 MHz.


Journal of the Acoustical Society of America | 2002

The magnitude of radiation force on ultrasound contrast agents.

Paul A. Dayton; John S. Allen; Katherine W. Ferrara

High-speed photography of insonified bubbles with a time resolution of 10 ns allows observations of translation due to radiation force, in addition to the visualization of radial oscillations. A modified version of the Rayleigh-Plesset equation is used to estimate the radius-time behavior of insonified microbubbles, and the accuracy of this model is verified experimentally. The translation of insonified microbubbles is calculated using a differential equation relating the acceleration of the bubble to the forces due to acoustic radiation and the drag imposed by the fluid. Simulations and experiments indicate that microbubbles translate significant distances with clinically relevant parameters. A 1.5 micron radius contrast agent can translate over 5 microns during a single 20-cycle, 2.25 MHz, 380 kPa acoustic pulse, achieving velocities over 0.5 m/s. Therefore, radiation force should be considered during an ultrasonic examination because of the possibility of influencing the position and flow velocity of the contrast agents with the interrogating acoustic beam.


Ultrasound in Medicine and Biology | 1999

Acoustic radiation force in vivo: a mechanism to assist targeting of microbubbles

Paul A. Dayton; Alexander L. Klibanov; Gary H. Brandenburger; Katherine W. Ferrara

The goal of targeted imaging is to produce an enhanced view of physiological processes or pathological tissue components. Contrast agents may improve the specificity of imaging modalities through selective targeting, and this may be particularly significant when using ultrasound (US) to image inflammatory processes or thrombi. One means of selective targeting involves the attachment of contrast agents to the desired site with the use of a specific binding mechanism. Because molecular binding mechanisms are effective over distances on the order of nanometers, targeting effectiveness would be greatly increased if the agent is initially concentrated in a particular region, and if the velocity of the agent is decreased as it passes the potential binding site. Ultrasonic transmission produces a primary radiation force that can manipulate microbubbles with each acoustic pulse. Observations demonstrate that primary radiation force can displace US contrast agents from the center of the streamline to the wall of a 200-microm cellulose vessel in vitro. Here, the effects of radiation force on contrast agents in vivo are presented for the first time. Experimental results demonstrate that radiation force can displace a contrast agent to the wall of a 50-microm blood vessel in the mouse cremaster muscle, can significantly reduce the velocity of flowing contrast agents, and can produce a reversible aggregation. Acoustic radiation force presents a means to localize and concentrate contrast agents near a vessel wall, which may assist the delivery of targeted agents.


Accounts of Chemical Research | 2009

Lipid-shelled vehicles: engineering for ultrasound molecular imaging and drug delivery.

Katherine W. Ferrara; Mark A. Borden; Hua Zhang

Ultrasound pressure waves can map the location of lipid-stabilized gas micro-bubbles after their intravenous administration in the body, facilitating an estimate of vascular density and microvascular flow rate. Microbubbles are currently approved by the Food and Drug Administration as ultrasound contrast agents for visualizing opacification of the left ventricle in echocardiography. However, the interaction of ultrasound waves with intravenously-injected lipid-shelled particles, including both liposomes and microbubbles, is a far richer field. Particles can be designed for molecular imaging and loaded with drugs or genes; the mechanical and thermal properties of ultrasound can then effect localized drug release. In this Account, we provide an overview of the engineering of lipid-shelled microbubbles (typical diameter 1000-10 000 nm) and liposomes (typical diameter 65-120 nm) for ultrasound-based applications in molecular imaging and drug delivery. The chemistries of the shell and core can be optimized to enhance stability, circulation persistence, drug loading and release, targeting to and fusion with the cell membrane, and therapeutic biological effects. To assess the biodistribution and pharmacokinetics of these particles, we incorporated positron emission tomography (PET) radioisotopes on the shell. The radionuclide (18)F (half-life approximately 2 h) was covalently coupled to a dipalmitoyl lipid, followed by integration of the labeled lipid into the shell, facilitating short-term analysis of particle pharmacokinetics and metabolism of the lipid molecule. Alternately, labeling a formed particle with (64)Cu (half-life 12.7 h), after prior covalent incorporation of a copper-chelating moiety onto the lipid shell, permits pharmacokinetic study of particles over several days. Stability and persistence in circulation of both liposomes and microbubbles are enhanced by long acyl chains and a poly(ethylene glycol) coating. Vascular targeting has been demonstrated with both nano- and microdiameter particles. Targeting affinity of the microbubble can be modulated by burying the ligand within a polymer brush layer; the application of ultrasound then reveals the ligand, enabling specific targeting of only the insonified region. Microbubbles and liposomes require different strategies for both drug loading and release. Microbubble loading is inhibited by the gas core and enhanced by layer-by-layer construction or conjugation of drug-entrapped particles to the surface. Liposome loading is typically internal and is enhanced by drug-specific loading techniques. Drug release from a microbubble results from the oscillation of the gas core diameter produced by the sound wave, whereas that from a liposome is enhanced by heat produced from the local absorption of acoustic energy within the tissue microenvironment. Biological effects induced by ultrasound, such as changes in cell membrane and vascular permeability, can enhance drug delivery. In particular, as microbubbles oscillate near a vessel wall, shock waves or liquid jets enhance drug transport. Mild heating induced by ultrasound, either before or after injection of the drug, facilitates the transport of liposomes from blood vessels to the tissue interstitium, thus increasing drug accumulation in the target region. Lipid-shelled vehicles offer many opportunities for chemists and engineers; ultrasound-based applications beyond the few currently in common use will undoubtedly soon multiply as molecular construction techniques are further refined.


Journal of Magnetic Resonance Imaging | 2002

Targeted imaging using ultrasound

Paul A. Dayton; Katherine W. Ferrara

The discipline of medical imaging is expanding to include both traditional anatomic modalities and new techniques for the functional assessment of the presence and extent of disease. Current FDA‐approved ultrasound contrast agents are micron‐sized bubbles with a stabilizing shell. Microbubble contrast agents can be used to estimate microvascular flow rate in a manner similar to dynamic contrast‐enhanced magnetic resonance imaging (MRI). The concentration of these agents within the vasculature, reticulo‐endothelial, or lymphatic systems produces an effective passive targeting of these areas. Liquid‐filled nanoparticles and liposomes have also demonstrated echogenicity and are under evaluation as ultrasound contrast agents. Actively targeted ultrasound relies on specially designed contrast agents to localize the targeted molecular signature or physiologic system. These agents typically remain within the vascular space, and therefore possible targets include molecular markers on thrombus, endothelial cells, and leukocytes. The purpose of this review is to summarize the requirements, challenges, current progress, and future directions of targeted imaging with ultrasound. J. Magn. Reson. Imaging 2002;16:362–377.


Circulation | 2000

Noninvasive Imaging of Inflammation by Ultrasound Detection of Phagocytosed Microbubbles

Jonathan R. Lindner; Paul A. Dayton; Matthew Coggins; Klaus Ley; Ji Song; Katherine W. Ferrara; Sanjiv Kaul

BACKGROUND We have previously shown that microbubbles adhere to leukocytes in regions of inflammation. We hypothesized that these microbubbles are phagocytosed by neutrophils and monocytes and remain acoustically active, permitting their detection in inflamed tissue. METHODS AND RESULTS In vitro studies were performed in which activated leukocytes were incubated with albumin or lipid microbubbles and observed under microscopy. Microbubbles attached to the surface of activated neutrophils and monocytes, were phagocytosed, and remained intact for up to 30 minutes. The rate of destruction of the phagocytosed microbubbles on exposure to ultrasound was less (P</=0.05) than that of free microbubbles at all acoustic pressures applied. Intravital microscopy and simultaneous ultrasound imaging of the cremaster muscle was performed in 6 mice to determine whether phagocytosed microbubbles could be detected in vivo. Fifteen minutes after intravenous injection of fluorescein-labeled microbubbles, when the blood-pool concentration was negligible, the number of phagocytosed/attached microbubbles within venules was 7-fold greater in tumor necrosis factor-alpha (TNF-alpha)-treated animals than in control animals (P<0.01). This increase in retained microbubbles resulted in a 5- to 6-fold-greater (P<0.01) degree of ultrasound contrast enhancement than in controls. CONCLUSIONS After attaching to activated neutrophils and monocytes, microbubbles are phagocytosed intact. Despite viscoelastic damping, phagocytosed microbubbles remain responsive to ultrasound and can be detected by ultrasound in vivo after clearance of freely circulating microbubbles from the blood pool. Thus, contrast ultrasound has potential for imaging sites of inflammation.


IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control | 2005

Influence of lipid shell physicochemical properties on ultrasound-induced microbubble destruction

Mark A. Borden; Dustin E. Kruse; Charles F. Caskey; Shukui Zhao; Paul A. Dayton; Katherine W. Ferrara

We present the first study of the effects of monolayer shell physicochemical properties on the destruction of lipid-coated microbubbles during insonification with single, one-cycle pulses at 2.25 MHz and low-duty cycles. Shell cohesiveness was changed by varying phospholipid and emulsifier composition, and shell microstructure was controlled by postproduction processing. Individual microbubbles with initial resting diameters between 1 and 10 /spl mu/m were isolated and recorded during pulsing with brightfield and fluorescence video microscopy. Microbubble destruction occurred through two modes: acoustic dissolution at 400 and 600 kPa and fragmentation at 800 kPa peak negative pressure. Lipid composition significantly impacted the acoustic dissolution rate, fragmentation propensity, and mechanism of excess lipid shedding. Less cohesive shells resulted in micron-scale or smaller particles of excess lipid material that shed either spontaneously or on the next pulse. Conversely, more cohesive shells resulted in the buildup of shell-associated lipid strands and globular aggregates of several microns in size; the latter showed a significant increase in total shell surface area and lability. Lipid-coated microbubbles were observed to reach a stable size over many pulses at intermediate acoustic pressures. Observations of shell microstructure between pulses allowed interpretation of the state of the shell during oscillation. We briefly discuss the implications of these results for therapeutic and diagnostic applications involving lipid-coated microbubbles as ultrasound contrast agents and drug/gene delivery vehicles.

Collaboration


Dive into the Katherine W. Ferrara's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul A. Dayton

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shengping Qin

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hua Zhang

University of California

View shared research outputs
Top Co-Authors

Avatar

Jai Woong Seo

University of California

View shared research outputs
Top Co-Authors

Avatar

Brett Z. Fite

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge