Katheryn R. Kolesar
University of California, Davis
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Katheryn R. Kolesar.
Science | 2012
Christopher D. Cappa; Timothy B. Onasch; Paola Massoli; Douglas R. Worsnop; T. S. Bates; Eben S. Cross; P. Davidovits; Jani Hakala; K. Hayden; B. T. Jobson; Katheryn R. Kolesar; D. A. Lack; Shao-Meng Li; Daniel Mellon; I. Nuaaman; Jason S. Olfert; Tuukka Petäjä; Patricia K. Quinn; Chen Song; R. Subramanian; Eric J. Williams; Rahul A. Zaveri
Dark Forcing Soot, or black carbon, is a ubiquitous atmospheric pollutant whose warming effect might be second only to carbon dioxide. When black carbon is emitted, it combines with other aerosols to form heterogeneous mixtures. Models have predicted that internal mixing of black carbon with other materials can double the amount of radiation absorbed. Cappa et al. (p. 1078) report that in situ measurements of the enhancement of radiation absorption by these mixed black carbon–containing particles in the atmosphere show a much smaller effect. Thus, many climate models may be overestimating the amount of warming caused by black carbon emissions. Direct measurements show that ambient atmospheric particulate black carbon absorbs less solar radiation than theory suggested. Atmospheric black carbon (BC) warms Earth’s climate, and its reduction has been targeted for near-term climate change mitigation. Models that include forcing by BC assume internal mixing with non-BC aerosol components that enhance BC absorption, often by a factor of ~2; such model estimates have yet to be clearly validated through atmospheric observations. Here, direct in situ measurements of BC absorption enhancements (Eabs) and mixing state are reported for two California regions. The observed Eabs is small—6% on average at 532 nm—and increases weakly with photochemical aging. The Eabs is less than predicted from observationally constrained theoretical calculations, suggesting that many climate models may overestimate warming by BC. These ambient observations stand in contrast to laboratory measurements that show substantial Eabs for BC are possible.
Journal of Physical Chemistry A | 2013
Christopher R. Ruehl; Theodora Nah; Gabriel Isaacman; David R. Worton; Arthur W. H. Chan; Katheryn R. Kolesar; Christopher D. Cappa; Allen H. Goldstein; Kevin R. Wilson
Insights into the influence of molecular structure and thermodynamic phase on the chemical mechanisms of hydroxyl radical-initiated heterogeneous oxidation are obtained by identifying reaction products of submicrometer particles composed of either n-octacosane (C28H58, a linear alkane) or squalane (C30H62, a highly branched alkane) and OH. A common pattern is observed in the positional isomers of octacosanone and octacosanol, with functionalization enhanced toward the end of the molecule. This suggests that relatively large linear alkanes are structured in submicrometer particles such that their ends are oriented toward the surface. For squalane, positional isomers of first-generation ketones and alcohols also form in distinct patterns. Ketones are favored on carbons adjacent to tertiary carbons, while hydroxyl groups are primarily found on tertiary carbons but also tend to form toward the end of the molecule. Some first-generation products, viz., hydroxycarbonyls and diols, contain two oxygen atoms. These results suggest that alkoxy radicals are important intermediates and undergo both intramolecular (isomerization) and intermolecular (chain propagation) hydrogen abstraction reactions. Oxidation products with carbon number less than the parent alkanes are observed to a much greater extent for squalane than for n-octacosane oxidation and can be explained by the preferential cleavage of bonds involving tertiary carbons.
Environmental Science & Technology | 2015
Katheryn R. Kolesar; Ziyue Li; Kevin R. Wilson; Christopher D. Cappa
The volatility of the compounds comprising organic aerosol (OA) determines their distribution between the gas and particle phases. However, there is a disconnect between volatility distributions as typically derived from secondary OA (SOA) growth experiments and the effective particle volatility as probed in evaporation experiments. Specifically, the evaporation experiments indicate an overall much less volatile SOA. This raises questions regarding the use of traditional volatility distributions in the simulation and prediction of atmospheric SOA concentrations. Here, we present results from measurements of thermally induced evaporation of SOA for nine different SOA types (i.e., distinct volatile organic compound and oxidant pairs) encompassing both anthropogenic and biogenic compounds and O3 and OH to examine the extent to which the low effective volatility of SOA is a general phenomenon or specific to a subset of SOA types. The observed extents of evaporation with temperature were similar for all the SOA types and indicative of a low effective volatility. Furthermore, minimal variations in the composition of all the SOA types upon heating-induced evaporation were observed. These results suggest that oligomer decomposition likely plays a major role in controlling SOA evaporation, and since the SOA formation time scale in these measurements was less than a minute, the oligomer-forming reactions must be similarly rapid. Overall, these results emphasize the importance of accounting for the role of condensed phase reactions in altering the composition of SOA when assessing particle volatility.
Environmental Science & Technology | 2014
Katheryn R. Kolesar; Gina Buffaloe; Kevin R. Wilson; Christopher D. Cappa
Recent work has established that secondary organic aerosol (SOA) can exist as an amorphous solid, leading to various suggestions that the addition of SOA coatings to existing particles will decrease the reactivity of those particles toward common atmospheric oxidants. Experimental evidence suggests that O3 is unable to physically diffuse through an exterior semisolid or solid layer thus inhibiting reaction with the core. The extent to which this suppression in reactivity occurs for OH has not been established, nor has this been demonstrated specifically for SOA. Here, measurements of the influence of adding a coating of α-pinene+O3 SOA onto squalane particles on the OH-initiated heterogeneous oxidation rate are reported. The chemical composition of the oxidized internally mixed particles was monitored online using a vacuum ultraviolet-aerosol mass spectrometer. Variations in the squalane oxidation rate with particle composition were quantified by measurement of the effective uptake coefficient, γeff, which is the loss rate of a species relative to the oxidant-particle collision rate. Instead of decreasing, the measured γeff increased continuously as the SOA coating thickness increased, by a factor of ∼2 for a SOA coating thickness of 42 nm (corresponding to ca. two-thirds of the particle mass). These results indicate that heterogeneous oxidation of ambient aerosol by OH radicals is not inhibited by SOA coatings, and further that condensed phase chemical pathways and rates in organic particles depend importantly on composition.
Atmospheric Chemistry and Physics | 2012
Rahul A. Zaveri; William J. Shaw; Daniel J. Cziczo; Beat Schmid; Richard A. Ferrare; M. L. Alexander; M. Alexandrov; Raul J. Alvarez; W. P. Arnott; Dean B. Atkinson; Sunil Baidar; R. M. Banta; James C. Barnard; Josef Beranek; Larry K. Berg; Fred J. Brechtel; W. A. Brewer; John F. Cahill; Brian Cairns; Christopher D. Cappa; Duli Chand; Swarup China; Jennifer M. Comstock; Manvendra K. Dubey; Richard C. Easter; M. Erickson; Jerome D. Fast; Cody Floerchinger; Bradley A. Flowers; Edward Charles Fortner
Geophysical Research Letters | 2012
Christopher R. Ruehl; Patrick Y. Chuang; Athanasios Nenes; Christopher D. Cappa; Katheryn R. Kolesar; Allen H. Goldstein
Science | 2013
Christopher D. Cappa; Timothy B. Onasch; Paola Massoli; Douglas R. Worsnop; T. S. Bates; Eben S. Cross; P. Davidovits; Jani Hakala; K. Hayden; B. T. Jobson; Katheryn R. Kolesar; D. A. Lack; Shao-Meng Li; Daniel Mellon; I. Nuaaman; Jason N. Olfert; Tuukka Petäjä; Patricia K. Quinn; Chen Song; R. Subramanian; Eric J. Williams; Rahul A. Zaveri
Atmospheric Chemistry and Physics | 2015
Katheryn R. Kolesar; C. Chen; D. Johnson; Christopher D. Cappa
Atmospheric Chemistry and Physics | 2016
Christopher D. Cappa; Katheryn R. Kolesar; Xiaolu Zhang; Dean B. Atkinson; Mikhail S. Pekour; Rahul A. Zaveri; Alla Zelenyuk; Qi Zhang
Atmospheric Chemistry and Physics | 2014
Dean B. Atkinson; James G. Radney; Janel Lum; Katheryn R. Kolesar; Daniel J. Cziczo; Mikhail S. Pekour; Qi Zhang; Ari Setyan; Alla Zelenyuk; Christopher D. Cappa