Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kathleen A. Pennington is active.

Publication


Featured researches published by Kathleen A. Pennington.


Disease Models & Mechanisms | 2012

Preeclampsia: multiple approaches for a multifactorial disease

Kathleen A. Pennington; Jessica M. Schlitt; Daniel L. Jackson; Laura C. Schulz; Danny J. Schust

Preeclampsia is a pregnancy-specific disorder characterized by hypertension and excess protein excretion in the urine. It is an important cause of maternal and fetal morbidity and mortality worldwide. The disease is almost exclusive to humans and delivery of the pregnancy continues to be the only effective treatment. The disorder is probably multifactorial, although most cases of preeclampsia are characterized by abnormal maternal uterine vascular remodeling by fetally derived placental trophoblast cells. Numerous in vitro and animal models have been used to study aspects of preeclampsia, the most common being models of placental oxygen dysregulation, abnormal trophoblast invasion, inappropriate maternal vascular damage and anomalous maternal-fetal immune interactions. Investigations into the pathophysiology and treatment of preeclampsia continue to move the field forward, albeit at a frustratingly slow pace. There remains a pressing need for novel approaches, new disease models and innovative investigators to effectively tackle this complex and devastating disorder.


Reproduction | 2009

Several fibroblast growth factors are expressed during pre-attachment bovine conceptus development and regulate interferon-tau expression from trophectoderm.

Flavia N.T. Cooke; Kathleen A. Pennington; Qi-En Yang; Alan D. Ealy

The trophectoderm-derived factor interferon tau (IFNT) maintains the uterus in a pregnancy-receptive state in cattle and sheep. Fibroblast growth factors (FGFs) are implicated in regulating IFNT expression and potentially other critical events associated with early conceptus development in cattle. The overall objectives of this work were to identify the various FGFs and FGF receptors (FGFRs) expressed in elongating pre-attachment bovine conceptuses and determine if these FGFs regulate conceptus development and/or mediate IFNT production. In vitro-derived bovine blastocysts and in vivo-derived elongated conceptuses collected at day 17 of pregnancy express at least four FGFR subtypes (R1c, R2b, R3c, R4). In addition, transcripts for FGF1, 2, and 10 but not FGF7 are present in elongated bovine conceptuses. The expression pattern of FGF10 most closely resembled that of IFNT, with both transcripts remaining low in day 8 and day 11 conceptuses and increasing substantially in day 14 and day 17 conceptuses. Supplementation with recombinant FGF1, 2 or 10 increased IFNT mRNA levels in bovine trophectoderm cells and bovine blastocysts and increased IFNT protein concentrations in trophectoderm-conditioned medium. Blastocyst development was not affected by any of the FGFs. In summary, at least four FGFRs reside in pre- and peri-attachment bovine conceptuses. Moreover, conceptuses express at least three candidate FGFs during elongation, the time of peak IFNT expression. These findings provide new insight for how conceptus-derived factors such as FGF1, 2, and 10 may control IFNT expression during early pregnancy in cattle.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Maternal exposure to bisphenol A and genistein has minimal effect on A(vy)/a offspring coat color but favors birth of agouti over nonagouti mice.

Cheryl S. Rosenfeld; Paizlee T. Sieli; Warzak Da; Mark R. Ellersieck; Kathleen A. Pennington; Roberts Rm

Reports that maternal diet influences coat color in mouse offspring carrying the agouti Avy allele have received considerable attention because the range, from pseudoagouti (brown) to yellow, predicts adult health outcomes, especially disposition toward obesity and diabetes, in yellower mice. Bisphenol A (BPA), an endocrine-disrupting compound with estrogenic properties, fed to a/a dams harboring Avy/a conceptuses has been reported to induce a significant shift toward yellower mice, whereas consumption of either genistein (G) alone or in combination with BPA led to greater numbers of healthy, brown offspring. Groups of C57/B6 a/a females, which are nonagouti, were fed either a phytoestrogen-free control diet or one of six experimental diets: diets 1–3 contained BPA (50 mg, 5 mg, and 50 μg BPA/kg food, respectively); diet 4 contained G (250 mg/kg food); diet 5 contained G plus BPA (250 and 50 mg/kg food, respectively); and diet 6 contained 0.1 μg of ethinyl estradiol (EE)/kg food. Mice were bred to Avy/a males over multiple parities. In all, 2,824 pups from 426 litters were born. None of the diets provided any significant differences in relative numbers of brown, yellow, or intermediate coat color Avy/a offspring. However, BPA plus G (P < 0.0001) and EE diets (P = 0.005), but not the four others, decreased the percentage of black (a/a) to Avy/a offspring from the expected Mendelian ratio of 1:1. Data suggest that Avy/a conceptuses, which may possess a so-called “thrifty genotype,” are at a competitive advantage over a/a conceptuses in certain uterine environments.


Reproduction | 2011

Consequences of conceptus exposure to colony-stimulating factor 2 on survival, elongation, interferon-τ secretion, and gene expression

B. Loureiro; J. Block; M.G. Favoreto; Silvia F. Carambula; Kathleen A. Pennington; Alan D. Ealy; P. J. Hansen

Exposure of bovine conceptuses to colony-stimulating factor 2 (CSF2) from days 5 to 7 of development can increase the percentage of transferred conceptuses that develop to term. The purpose of this experiment was to understand the mechanism by which CSF2 increases embryonic and fetal survival. Conceptuses were produced in vitro in the presence or absence of 10  ng/ml CSF2 from days 5 to 7 after insemination, transferred into cows, and flushed from the uterus at day 15 of pregnancy. There was a tendency (P=0.07) for the proportion of cows with a recovered conceptus to be greater for those receiving a CSF2-treated conceptus (35% for control versus 66% for CSF2). Antiviral activity in uterine flushings, a measure of the amount of interferon-τ (IFNT2) secreted by the conceptus, tended to be greater for cows receiving CSF2-treated conceptuses than for cows receiving control conceptuses. This difference approached significance when only cows with detectable antiviral activity were considered (P=0.07). In addition, CSF2 increased mRNA for IFNT2 (P=0.08) and keratin 18 (P<0.05) in extraembryonic membranes. Among a subset of filamentous conceptuses that were analyzed by microarray hybridization, there was no effect of CSF2 on gene expression in the embryonic disc or extraembryonic membranes. Results suggest that the increase in calving rate caused by CSF2 treatment involves, in part, more extensive development of extraembryonic membranes and capacity of the conceptus to secrete IFNT2 at day 15 of pregnancy.


Endocrinology | 2012

Effect of Food Restriction and Leptin Supplementation on Fetal Programming in Mice

Kathleen A. Pennington; Jennifer L. Harper; Ashley N. Sigafoos; Lindsey M. Beffa; Stephanie M. Carleton; Charlotte L. Phillips; Laura C. Schulz

Metabolic disease is a significant global health and economic problem. In a phenomenon referred to as fetal programming, offspring of underweight or overweight mothers have an increased incidence of adulthood obesity and metabolic disease. Undernourished individuals have decreased levels of leptin, a regulator of energy balance, whereas obese people develop hyperleptinemia and leptin resistance. We hypothesize that alterations in circulating leptin during pregnancy contribute to programming events caused by maternal nutritional status. To test this hypothesis, pregnant mice were randomly placed in one of three treatment groups: ad libitum feed plus saline injection (control, n = 5), 50% food restriction plus saline injection (restricted, n = 4), or 50% food restriction plus 1 mg/kg · d leptin injection (restricted, leptin treated, n = 4). Mice were treated from 1.5 to 11.5 d after conception and then returned to ad libitum feeding until weaning. At 19 wk after weaning, offspring were placed on a 45% fat diet and then followed up until 26 wk after weaning, at which time they were killed, and samples were collected for further analysis. Our results demonstrate that males are more negatively impacted by high-fat diet than females, regardless of maternal treatment. We provide evidence that differential response to leptin may mediate the sexual dimorphism observed in fetal programming in which male offspring are more affected by maternal undernutrition and female offspring by maternal overnutrition. We show that female offspring born to food-restricted, leptin-supplemented mothers are obese and insulin resistant. This may mimic fetal programming events seen in offspring of overweight women.


Biology of Reproduction | 2012

Leptin and the Placental Response to Maternal Food Restriction During Early Pregnancy in Mice

Laura C. Schulz; Jessica M. Schlitt; Gerialisa Caesar; Kathleen A. Pennington

ABSTRACT Several studies have demonstrated that maternal undernutrition or overnutrition during pregnancy can have negative consequences for the health of children born to these pregnancies, but the physiological mechanisms by which this occurs are not completely understood. During periods of food restriction, concentrations of leptin decline, whereas leptin is elevated in obesity, suggesting that it may play a role in the response to altered nutrition during pregnancy. This study compares placental development and global placental gene expression profiles at Day 11.5 in pregnant control mice, mice that were undernourished, and mice that were undernourished but given leptin. Placentas from mothers exposed to food restriction preserved the placental labyrinth zone at the expense of the junctional zone, an effect abrogated in the restricted plus leptin group, which had a significant decrease in the labyrinth zone area compared with controls. Similarly, there were more significant differences in gene expression between placentas from control and restricted plus leptin mothers (1128 differentially expressed genes) than between placentas of control and restricted mothers (281 differentially expressed genes). We conclude that the presence of high concentrations of circulating leptin during food restriction disrupts the normal adaptive response of the placenta to reduced energy availability.


Journal of Visualized Experiments | 2012

Isolation of primary mouse trophoblast cells and trophoblast invasion assay.

Kathleen A. Pennington; Jessica M. Schlitt; Laura C. Schulz

The placenta is responsible for the transport of nutrients, gasses and growth factors to the fetus, as well as the elimination of wastes. Thus, defects in placental development have important consequences for the fetus and mother, and are a major cause of embryonic lethality. The major cell type of the fetal portion of the placenta is the trophoblast. Primary mouse placental trophoblast cells are a useful tool for studying normal and abnormal placental development, and unlike cell lines, may be isolated and used to study trophoblast at specific stages of pregnancy. In addition, primary cultures of trophoblast from transgenic mice may be used to study the role of particular genes in placental cells. The protocol presented here is based on the description by Thordarson et al., in which a percoll gradient is used to obtain a relatively pure trophoblast cell population from isolated mouse placentas. It is similar to the more widely used methods for human trophoblast cell isolation. Purity may be assessed by immunocytochemical staining of the isolated cells for cytokeratin 7. Here, the isolated cells are then analyzed using a matrigel invasion assay to assess trophoblast invasiveness in vitro. The invaded cells are analyzed by immunocytochemistry and stained for counting.


Reproduction | 2015

Placental changes caused by food restriction during early pregnancy in mice are reversible.

Jennifer L. Harper; Gerialisa Caesar; Kathleen A. Pennington; J. Wade Davis; Laura C. Schulz

In a previous study, 50% calorie restriction in mice from d1.5 to 11.5 of pregnancy resulted in reduced placental weights and areas,relative sparing of labyrinth zone area compared to junctional zone area, and dramatic changes in global gene expression profiles.However, little lasting effect was seen on adult offspring of these pregnancies, with a slight reduction in adiposity in males and some changes in liver gene expression in both sexes. The goals of the present study were to determine whether the placental changes induced by caloric restriction in early pregnancy had permanent, irreversible effects on the placenta, and whether the changes in liver gene expression in adult offspring were present before birth. There were no differences in placental weights or areas, or the areas of individual placental zones near term in mice that had previously been food restricted. Global gene expression profiles at d18.5 were indistinguishable in placentas from control and previously food-restricted mothers. In fetuses from restricted dams at d18.5, liver expression of Gck, a key regulator of glycogen synthesis, was reduced, whereas its expression was increased in livers from adult offspring of restricted dams. Ppara expression was also reduced in fetal livers from restricted dams at d18.5, but not in adult offspring livers. We conclude that alterations in the placenta caused by nutrient restriction in early pregnancy are reversible, and that alterations in gene expression in livers of adult offspring are not a result of changes initiated during pregnancy and maintained through adulthood.


Endocrinology | 2015

Hyperleptinemia During Pregnancy Decreases Adult Weight of Offspring and Is Associated With Increased Offspring Locomotor Activity in Mice.

Kelly E. Pollock; Damaiyah Stevens; Kathleen A. Pennington; Rose Thaisrivongs; Jennifer Kaiser; Mark R. Ellersieck; Dennis K. Miller; Laura C. Schulz

Pregnant women who are obese or have gestational diabetes mellitus have elevated leptin levels and their children have an increased risk for child and adult obesity. The goals of this study were to determine whether offspring weights are altered by maternal hyperleptinemia, and whether this occurs via behavioral changes that influence energy balance. We used 2 hyperleptinemic mouse models. The first was females heterozygous for a leptin receptor mutation (DB/+), which were severely hyperleptinemic, and that were compared with wild-type females. The second model was wild-type females infused with leptin (LEP), which were moderately hyperleptinemic, and were compared with wild-type females infused with saline (SAL). Total food consumption, food preference, locomotor activity, coordinated motor skills, and anxiety-like behaviors were assessed in wild-type offspring from each maternal group at 3 postnatal ages: 4-6, 11-13, and 19-21 weeks. Half the offspring from each group were then placed on a high-fat diet, and behaviors were reassessed. Adult offspring from both groups of hyperleptinemic dams weighed less than their respective controls beginning at 23 weeks of age, independent of diet or sex. Weight differences were not explained by food consumption or preference, because female offspring from hyperleptinemic dams tended to consume more food and had reduced preference for palatable, high-fat and sugar, food compared with controls. Offspring from DB/+ dams were more active than offspring of controls, as were female offspring of LEP dams. Maternal hyperleptinemia during pregnancy did not predispose offspring to obesity, and in fact, reduced weight gain.


Reproductive Biology and Endocrinology | 2012

The expression and potential function of bone morphogenetic proteins 2 and 4 in bovine trophectoderm

Kathleen A. Pennington; Alan D. Ealy

BackgroundBone morphogenetic proteins (BMPs) were first described for their roles in bone formation, but they now also are known to possess additional activities, including those relating to embryogenesis. The objectives of this work were to 1) determine if peri-attachment bovine conceptuses and bovine trophoblast cells (CT1) contain transcripts for BMP2 and 4, an innate inhibitor noggin (NOG), and BMP2/4 receptors (BMPRII, ACVR1, BMPR1A, BMPR1B), and 2) determine if BMP2 or 4 supplementation to CT1 cells affects cell proliferation, differentiation or trophoblast-specific gene expression.MethodsRNA was isolated from day 17 bovine conceptuses and CT1 cells. After RT-PCR, amplified products were cloned and sequenced. In other studies CT1 cells were treated with BMP2 or 4 at various concentrations and effects on cell viability, cell differentiation and abundance of IFNT and CSH1 mRNA were evaluated.ResultsTranscripts for BMP2 and 4 were detected in bovine conceptuses and CT1 cells. Also, transcripts for each BMP receptor were detected in conceptuses and CT1 cells. Transcripts for NOG were detected in conceptuses but not CT1 cells. Cell proliferation was reduced by BMP4 but not BMP2 supplementation. Both factors reduced IFNT mRNA abundance but had no effect on CSH1 mRNA abundance in CT1 cells.ConclusionsThe BMP2/4 ligand and receptor system presides within bovine trophectoderm prior to uterine attachment. BMP4 negatively impacts CT1 cell growth and both BMPs affect IFNT mRNA abundance.

Collaboration


Dive into the Kathleen A. Pennington's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Qi-En Yang

Washington State University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge