Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kathleen C. Lundberg is active.

Publication


Featured researches published by Kathleen C. Lundberg.


Journal of Immunology | 2005

Potentiation of Caspase-1 Activation by the P2X7 Receptor Is Dependent on TLR Signals and Requires NF-κB-Driven Protein Synthesis

J. Michelle Kahlenberg; Kathleen C. Lundberg; Sylvia B. Kertesy; Yan Qu; George R. Dubyak

The proinflammatory cytokines IL-1β and IL-18 are inactive until cleaved by the enzyme caspase-1. Stimulation of the P2X7 receptor (P2X7R), an ATP-gated ion channel, triggers rapid activation of caspase-1. In this study we demonstrate that pretreatment of primary and Bac1 murine macrophages with TLR agonists is required for caspase-1 activation by P2X7R but it is not required for activation of the receptor itself. Caspase-1 activation by nigericin, a K+/H+ ionophore, similarly requires LPS priming. This priming by LPS is dependent on protein synthesis, given that cyclohexamide blocks the ability of LPS to prime macrophages for activation of caspase-1 by the P2X7R. This protein synthesis is likely mediated by NF-κB, as pretreatment of cells with the proteasome inhibitor MG132, or the IκB kinase inhibitor Bay 11-7085 before LPS stimulation blocks the ability of LPS to potentiate the activation of caspase-1 by the P2X7R. Thus, caspase-1 regulation in macrophages requires inflammatory stimuli that signal through the TLRs to up-regulate gene products required for activation of the caspase-1 processing machinery in response to K+-releasing stimuli such as ATP.


Proceedings of the National Academy of Sciences of the United States of America | 2005

Reversible redox-dependent modulation of mitochondrial aconitase and proteolytic activity during in vivo cardiac ischemia/reperfusion

Anne Laure Bulteau; Kathleen C. Lundberg; Masao Ikeda-Saito; Grazia Isaya; Luke I. Szweda

Prooxidents can induce reversible inhibition or irreversible inactivation and degradation of the mitochondrial enzyme aconitase. Cardiac ischemia/reperfusion is associated with an increase in mitochondrial free radical production. In the current study, the effects of reperfusion-induced production of prooxidants on mitochondrial aconitase and proteolytic activity were determined to assess whether alterations represented a regulated response to changes in redox status or oxidative damage. Evidence is provided that ATP-dependent proteolytic activity increased during early reperfusion followed by a time-dependent reduction in activity to control levels. These alterations in proteolytic activity paralleled an increase and subsequent decrease in the level of oxidatively modified protein. In vitro data supports a role for prooxidants in the activation of ATP-dependent proteolytic activity. Despite inhibition during early periods of reperfusion, aconitase was not degraded under the conditions of these experiments. Aconitase activity exhibited a decline in activity followed by reactivation during cardiac reperfusion. Loss and regain in activity involved reversible sulfhydryl modification. Aconitase was found to associate with the iron binding protein frataxin exclusively during reperfusion. In vitro, frataxin has been shown to protect aconitase from [4Fe-4S]2+ cluster disassembly, irreversible inactivation, and, potentially, degradation. Thus, the response of mitochondrial aconitase and ATP-dependent proteolytic activity to reperfusion-induced prooxidant production appears to be a regulated event that would be expected to reduce irreparable damage to the mitochondria.


Ageing Research Reviews | 2003

Aging, lipofuscin formation, and free radical-mediated inhibition of cellular proteolytic systems

Pamela A. Szweda; Melissa Camouse; Kathleen C. Lundberg; Terry D. Oberley; Luke I. Szweda

Alterations in a wide array of physiological functions are a normal consequence of aging. Importantly, aged individuals exhibit an enhanced susceptibility to various degenerative diseases and appear less able than their young and adult counterparts to withstand (patho)physiological stress. Elucidation of mechanisms at play in the aging process would benefit the development of effective strategies for enhancing the quality of life for the elderly. It is likely that decrements in cellular and physiological function that occur during aging are the net result of numerous interacting factors. The current review focuses on the potential contribution(s) of free radical-mediated modifications to protein structure/function and alterations in the activities of two major proteolytic systems within cells, lysosomes and the proteasome, to the age-dependent accumulation of fluorescent intracellular granules, termed lipofuscin. Specifically, aging appears to influence the interplay between the occurrences of free radical-derived modifications to protein and the ability of cells to carry out critical proteolytic functions. We present immunochemical and ultrastructural evidence demonstrating the occurrence of a fluorescent protein cross-link derived from free radical-mediated reaction(s) within lipofuscin granules of rat cerebral cortex neurons. In addition, we provide evidence that a fluorophore-modified protein present in lipofuscin granules is the alpha subunit of F1F0-ATP synthase, a mitochondrial protein. It has previously been shown that protein(s) bearing this particular fluorescent cross-link are resistant to proteolysis and can inhibit the proteasome in a non-competitive fashion (J. Biol. Chem. 269 (1994a) 21639; FEBS Lett. 405 (1997) 21). Therefore, the current findings demonstrate that free radical-mediated modifications to protein(s) that lead to the production of inhibitor(s) of cellular proteolytic systems are present on specific protein components of lipofuscin. In addition, the mitochondrial origin of one of these proteins indicates specific intracellular pathways likely to be influenced by free radical events and participate in the formation of lipofuscin. The results of these studies are related to previous in vitro and in vivo observations in the field, thus shedding light on potential consequences to cellular function. In addition, future research directions suggested by the available evidence are discussed.


Journal of Immunology | 2005

Inhibitory Effects of Chloride on the Activation of Caspase-1, IL-1β Secretion, and Cytolysis by the P2X7 Receptor

Philip A. Verhoef; Sylvia B. Kertesy; Kathleen C. Lundberg; J. Michelle Kahlenberg; George R. Dubyak

The P2X7 receptor (P2X7R) is an ATP-gated cation channel that activates caspase-1 leading to the maturation and secretion of IL-1β. Because previous studies indicated that extracellular Cl− exerts a negative allosteric effect on ATP-gating of P2X7R channels, we tested whether Cl− attenuates the P2X7R→caspase-1→IL-1β signaling cascade in murine and human macrophages. In Bac1 murine macrophages, substitution of extracellular Cl− with gluconate produced a 10-fold increase in the rate and extent of ATP-induced IL-1β processing and secretion, while reducing the EC50 for ATP by 5-fold. Replacement of Cl− with gluconate also increased the potency of ATP as an inducer of mature IL-1β secretion in primary mouse bone marrow-derived macrophages and in THP-1 human monocytes/macrophages. Our observations were consistent with actions of Cl− at three levels: 1) a negative allosteric effect of Cl−, which limits the ability of ATP to gate the P2X7R-mediated cation fluxes that trigger caspase-1 activation; 2) an intracellular accumulation of Cl− via nonselective pores induced by P2X7R with consequential repression of caspase-1-mediated processing of IL-1β; and 3) a facilitative effect of Cl− substitution on the cytolytic release of unprocessed pro-IL-1β that occurs with sustained activation of P2X7R. This cytolysis was repressed by the cytoprotectant glycine, permitting dissociation of P2X7R-regulated secretion of mature IL-1β from the lytic release of pro-IL-1β. These results suggest that under physiological conditions P2X7R are maintained in a conformationally restrained state that limits channel gating and coupling of the receptor to signaling pathways that regulate caspase-1.


Molecular & Cellular Proteomics | 2015

Proteomics of Skin Proteins in Psoriasis: From Discovery and Verification in a Mouse Model to Confirmation in Humans

Kathleen C. Lundberg; Yi Fritz; Andrew Johnston; Alexander M. Foster; Jaymie Baliwag; Johann E. Gudjonsson; Daniela Schlatzer; Giridharan Gokulrangan; Thomas S. McCormick; Mark R. Chance; Nicole L. Ward

Herein, we demonstrate the efficacy of an unbiased proteomics screening approach for studying protein expression changes in the KC-Tie2 psoriasis mouse model, identifying multiple protein expression changes in the mouse and validating these changes in human psoriasis. KC-Tie2 mouse skin samples (n = 3) were compared with littermate controls (n = 3) using gel-based fractionation followed by label-free protein expression analysis. 5482 peptides mapping to 1281 proteins were identified and quantitated: 105 proteins exhibited fold-changes ≥2.0 including: stefin A1 (average fold change of 342.4 and an average p = 0.0082; cystatin A, human ortholog); slc25a5 (average fold change of 46.2 and an average p = 0.0318); serpinb3b (average fold change of 35.6 and an average p = 0.0345; serpinB1, human ortholog); and kallikrein related peptidase 6 (average fold change of 4.7 and an average p = 0.2474; KLK6). We independently confirmed mouse gene expression-based increases of selected genes including serpinb3b (17.4-fold, p < 0.0001), KLK6 (9-fold, p = 0.002), stefin A1 (7.3-fold; p < 0.001), and slc25A5 (1.5-fold; p = 0.05) using qRT-PCR on a second cohort of animals (n = 8). Parallel LC/MS/MS analyses on these same samples verified protein-level increases of 1.3-fold (slc25a5; p < 0.05), 29,000-fold (stefinA1; p < 0.01), 322-fold (KLK6; p < 0.0001) between KC-Tie2 and control mice. To underscore the utility and translatability of our combined approach, we analyzed gene and protein expression levels in psoriasis patient skin and primary keratinocytes versus healthy controls. Increases in gene expression for slc25a5 (1.8-fold), cystatin A (3-fold), KLK6 (5.8-fold), and serpinB1 (76-fold; all p < 0.05) were observed between healthy controls and involved lesional psoriasis skin and primary psoriasis keratinocytes. Moreover, slc25a5, cystatin A, KLK6, and serpinB1 protein were all increased in lesional psoriasis skin compared with normal skin. These results highlight the usefulness of preclinical disease models using readily-available mouse skin and demonstrate the utility of proteomic approaches for identifying novel peptides/proteins that are differentially regulated in psoriasis that could serve as sources of auto-antigens or provide novel therapeutic targets for the development of new anti-psoriatic treatments.


Proteomics | 2015

Proteomic and bioinformatics profile of paired human alveolar macrophages and peripheral blood monocytes

Sara E. Tomechko; Kathleen C. Lundberg; Jessica Jarvela; Gurkan Bebek; Nicole G. Chesnokov; Daniela Schlatzer; Rob M. Ewing; W. Henry Boom; Mark R. Chance; Richard F. Silver

Little is known about proteomic differences between pluripotent human peripheral blood monocytes (MN) and their terminally‐differentiated pulmonary counterparts, alveolar macrophages (AM). To better characterize these cell populations, we performed a label‐free shotgun proteomics assessment of matched AM and MN preparations from eight healthy volunteers. With an FDR of less than 0.45%, we identified 1754 proteins within AM and 1445 from MN. Comparison of the two proteomes revealed that 1239 of the proteins found in AM were shared with MN, whereas 206 proteins were uniquely identified in MN and 515 were unique to AM. Molecular and cellular functions, protein classes, development associations, and membership in physiological systems and canonical pathways were identified among the detected proteins. Analysis of biologic processes represented by these proteomes indicated that MN were most prominently enriched for proteins involved in cellular movement and immune cell trafficking. In contrast, AM were enriched for proteins involved in protein trafficking, molecular transport, and cellular assembly and organization. These findings provide a baseline proteomic resource for further studies aimed at better understanding of the functional differences between MN and AM in both health and disease.


PLOS ONE | 2015

Modification of β-Defensin-2 by Dicarbonyls Methylglyoxal and Glyoxal Inhibits Antibacterial and Chemotactic Function In Vitro

Janna Kiselar; Xiaowei Wang; George R. Dubyak; Caroline El Sanadi; Santosh K. Ghosh; Kathleen C. Lundberg; Wesley M. Williams

Background Beta-defensins (hBDs) provide antimicrobial and chemotactic defense against bacterial, viral and fungal infections. Human β-defensin-2 (hBD-2) acts against gram-negative bacteria and chemoattracts immature dendritic cells, thus regulating innate and adaptive immunity. Immunosuppression due to hyperglycemia underlies chronic infection in Type 2 diabetes. Hyperglycemia also elevates production of dicarbonyls methylgloxal (MGO) and glyoxal (GO). Methods The effect of dicarbonyl on defensin peptide structure was tested by exposing recombinant hBD-2 (rhBD-2) to MGO or GO with subsequent analysis by MALDI-TOF MS and LC/MS/MS. Antimicrobial function of untreated rhBD-2 vs. rhBD-2 exposed to dicarbonyl against strains of both gram-negative and gram-positive bacteria in culture was determined by radial diffusion assay. The effect of dicarbonyl on rhBD-2 chemotactic function was determined by chemotaxis assay in CEM-SS cells. Results MGO or GO in vitro irreversibly adducts to the rhBD-2 peptide, and significantly reduces antimicrobial and chemotactic functions. Adducts derive from two arginine residues, Arg22 and Arg23 near the C-terminus, and the N-terminal glycine (Gly1). We show by radial diffusion testing on gram-negative E. coli and P. aeruginosa, and gram-positive S. aureus, and a chemotaxis assay for CEM-SS cells, that antimicrobial activity and chemotactic function of rhBD-2 are significantly reduced by MGO. Conclusions Dicarbonyl modification of cationic antimicrobial peptides represents a potential link between hyperglycemia and the clinical manifestation of increased susceptibility to infection, protracted wound healing, and chronic inflammation in undiagnosed and uncontrolled Type 2 diabetes.


American Journal of Medical Genetics Part A | 2017

A novel microduplication of ARID1B: Clinical, genetic, and proteomic findings

Catarina M. Seabra; Nicholas Szoko; Serkan Erdin; Ashok Ragavendran; Alexei Stortchevoi; Patrícia Maciel; Kathleen C. Lundberg; Daniela Schlatzer; Janice L. Smith; Michael E. Talkowski; James F. Gusella; Marvin R. Natowicz

Genetic alterations of ARID1B have been recently recognized as one of the most common mendelian causes of intellectual disability and are associated with both syndromic and non‐syndromic phenotypes. The ARID1B protein, a subunit of the chromatin remodeling complex SWI/SNF‐A, is involved in the regulation of transcription and multiple downstream cellular processes. We report here the clinical, genetic, and proteomic phenotypes of an individual with a unique apparent de novo mutation of ARID1B due to an intragenic duplication. His neurodevelopmental phenotype includes a severe speech/language disorder with full scale IQ scores 78–98 and scattered academic skill levels, expanding the phenotypic spectrum of ARID1B mutations. Haploinsufficiency of ARID1B was determined both by RNA sequencing and quantitative RT‐PCR. Fluorescence in situ hybridization analysis supported an intragenic localization of the ARID1B copy number gain. Principal component analysis revealed marked differentiation of the subjects lymphoblast proteome from that of controls. Of 3426 proteins quantified, 1014 were significantly up‐ or down‐regulated compared to controls (q < 0.01). Pathway analysis revealed highly significant enrichment for canonical pathways of EIF2 and EIF4 signaling, protein ubiquitination, tRNA charging and chromosomal replication, among others. Network analyses revealed down‐regulation of: (1) intracellular components involved in organization of membranes, organelles, and vesicles; (2) aspects of cell cycle control, signal transduction, and nuclear protein export; (3) ubiquitination and proteosomal function; and (4) aspects of mRNA synthesis/splicing. Further studies are needed to determine the detailed molecular and cellular mechanisms by which constitutional haploinsufficiency of ARID1B causes syndromic and non‐syndromic developmental disabilities.


Journal of Biological Chemistry | 2001

Oxidative Modification and Inactivation of the Proteasome during Coronary Occlusion/Reperfusion

Anne Laure Bulteau; Kathleen C. Lundberg; Kenneth M. Humphries; Hesham A. Sadek; Pamela A. Szweda; Bertrand Friguet; Luke I. Szweda


Archives of Biochemistry and Biophysics | 2004

Initiation of mitochondrial-mediated apoptosis during cardiac reperfusion

Kathleen C. Lundberg; Luke I. Szweda

Collaboration


Dive into the Kathleen C. Lundberg's collaboration.

Top Co-Authors

Avatar

Luke I. Szweda

Oklahoma Medical Research Foundation

View shared research outputs
Top Co-Authors

Avatar

Daniela Schlatzer

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

George R. Dubyak

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Mark R. Chance

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anne Laure Bulteau

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Giridharan Gokulrangan

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge