Kathleen G. Dickman
Stony Brook University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kathleen G. Dickman.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Chung-Hsin Chen; Kathleen G. Dickman; Masaaki Moriya; Jiri Zavadil; Viktoriya S. Sidorenko; Karen L. Edwards; Dmitri V. Gnatenko; Lin Wu; Robert J. Turesky; Xue Ru Wu; Yeong-Shiau Pu; Arthur P. Grollman
Aristolochic acid, a potent human carcinogen produced by Aristolochia plants, is associated with urothelial carcinoma of the upper urinary tract (UUC). Following metabolic activation, aristolochic acid reacts with DNA to form aristolactam (AL)-DNA adducts. These lesions concentrate in the renal cortex, where they serve as a sensitive and specific biomarker of exposure, and are found also in the urothelium, where they give rise to a unique mutational signature in the TP53 tumor-suppressor gene. Using AL-DNA adducts and TP53 mutation spectra as biomarkers, we conducted a molecular epidemiologic study of UUC in Taiwan, where the incidence of UUC is the highest reported anywhere in the world and where Aristolochia herbal remedies have been used extensively for many years. Our study involves 151 UUC patients, with 25 patients with renal cell carcinomas serving as a control group. The TP53 mutational signature in patients with UUC, dominated by otherwise rare A:T to T:A transversions, is identical to that observed in UUC associated with Balkan endemic nephropathy, an environmental disease. Prominent TP53 mutational hotspots include the adenine bases of 5′AG (acceptor) splice sites located almost exclusively on the nontranscribed strand. A:T to T:A mutations also were detected at activating positions in the FGFR3 and HRAS oncogenes. AL-DNA adducts were present in the renal cortex of 83% of patients with A:T to T:A mutations in TP53, FGFR3, or HRAS. We conclude that exposure to aristolochic acid contributes significantly to the incidence of UUC in Taiwan, a finding with significant implications for global public health.
Circulation | 2007
Sami I. Said; Sayyed A. Hamidi; Kathleen G. Dickman; Anthony M. Szema; Sergey Lyubsky; Richard Z. Lin; Ya-Ping Jiang; John J. Chen; James A. Waschek; Smadar Kort
Background— Vasoactive intestinal peptide (VIP), a pulmonary vasodilator and inhibitor of vascular smooth muscle proliferation, has been reported absent in pulmonary arteries from patients with idiopathic pulmonary arterial hypertension (PAH). We have tested the hypothesis that targeted deletion of the VIP gene may lead to PAH with pulmonary vascular remodeling. Methods and Results— We examined VIP knockout (VIP−/−) mice for evidence of PAH, right ventricular (RV) hypertrophy, and pulmonary vascular remodeling. Relative to wild-type control mice, VIP−/− mice showed moderate RV hypertension, RV hypertrophy confirmed by increased ratio of RV to left ventricle plus septum weight, and enlarged, thickened pulmonary artery and smaller branches with increased muscularization and narrowed lumen. Lung sections also showed perivascular inflammatory cell infiltrates. No systemic hypertension and no arterial hypoxemia existed to explain the PAH. The condition was associated with increased mortality. Both the vascular remodeling and RV remodeling were attenuated after a 4-week treatment with VIP. Conclusions— Deletion of the VIP gene leads to spontaneous expression of moderately severe PAH in mice during air breathing. Although not an exact model of idiopathic PAH, the VIP−/− mouse should be useful for studying molecular mechanisms of PAH and evaluating potential therapeutic agents. VIP replacement therapy holds promise for the treatment of PAH, and mutations of the VIP gene may be a factor in the pathogenesis of idiopathic PAH.
Science Translational Medicine | 2013
Margaret L. Hoang; Chung-Hsin Chen; Viktoriya S. Sidorenko; Jian He; Kathleen G. Dickman; Byeong Hwa Yun; Masaaki Moriya; Noushin Niknafs; Christopher Douville; Rachel Karchin; Robert J. Turesky; Yeong-Shiau Pu; Bert Vogelstein; Nickolas Papadopoulos; Arthur P. Grollman; Kenneth W. Kinzler; Thomas A. Rosenquist
The mutational signature of aristolochic acid exemplifies how genome-wide sequencing can be used to identify environmental exposures leading to cancer. Carcinogen AAlert Aristolochic acid (AA) is a natural compound derived from plants in the Aristolochia genus. For centuries, Aristolochia has been used throughout Asia to treat a variety of ailments as a component of traditional Chinese medicine. In recent years, however, a more sinister side of this herb has come to light when it was linked to kidney damage and cancers of the urinary tract. Now, two studies by Poon et al. and Hoang et al. present a “molecular signature” of AA-induced DNA damage, which helps to explain the mutagenic effects of AA and may also be useful as a way to detect unsuspected AA exposure as a cause of cancer. The molecular signature seen in AA-associated tumors is characterized by a predominance of A:T-to-T:A transversions, a relatively unusual type of mutation that is infrequently seen in other types of cancer, including those caused by other carcinogens. These mutations concentrate at splice sites, causing the inappropriate inclusion or exclusion of entire exons in the resulting mRNA. The overall mutation rate is another notable feature of AA-associated cancers, because it is several times higher than the rate of mutations caused by other carcinogens such as tobacco and ultraviolet light. In both studies, the authors also used the molecular signature to discover that AA was a likely cause of tumors previously attributed to other carcinogens. In one case, a urinary tract cancer that had been attributed to smoking and, in the other case, a liver cancer previously attributed to a chronic hepatitis infection were both identified as having the telltale signature of AA mutagenesis. The identification of a specific molecular signature for AA has both clinical and public health implications. For individual patients, the molecular signature could help physicians identify which tumors were caused by AA. Although this information cannot yet be used to optimize the treatment of individual patients, those who are diagnosed with AA-associated cancers could be monitored more closely for the appearance of additional tumors. Meanwhile, a better understanding of the mutagenic effects of AA should also help to strengthen public health efforts to decrease exposure to this carcinogenic herb. In humans, exposure to aristolochic acid (AA) is associated with urothelial carcinoma of the upper urinary tract (UTUC). Exome sequencing of UTUCs from 19 individuals with documented exposure to AA revealed a remarkably large number of somatic mutations and an unusual mutational signature attributable to AA. Most of the mutations (72%) in these tumors were A:T-to-T:A transversions, located predominantly on the nontranscribed strand, with a strong preference for deoxyadenosine in a consensus sequence (T/CAG). This trinucleotide motif overlaps the canonical splice acceptor site, possibly accounting for the excess of splice site mutations observed in these tumors. The AA mutational fingerprint was found frequently in oncogenes and tumor suppressor genes in AA-associated UTUC. The AA mutational signature was observed in one patient’s tumor from a UTUC cohort without previous indication of AA exposure. Together, these results directly link an established environmental mutagen to cancer through genome-wide sequencing and highlight its power to reveal individual exposure to carcinogens.
Kidney International | 2012
Bojan Jelaković; Sandra Karanović; Ivana Vuković-Lela; Frederick Miller; Karen L. Edwards; Jovan Nikolic; Karla Tomić; Neda Slade; Branko Brdar; Robert J. Turesky; Želimir Stipančić; Damir Dittrich; Arthur P. Grollman; Kathleen G. Dickman
Endemic (Balkan) nephropathy is a chronic tubulointerstitial disease frequently accompanied by urothelial cell carcinomas of the upper urinary tract. This disorder has recently been linked to exposure to aristolochic acid, a powerful nephrotoxin and human carcinogen. Following metabolic activation, aristolochic acid reacts with genomic DNA to form aristolactam-DNA adducts that generate a unique TP53 mutational spectrum in the urothelium. The aristolactam-DNA adducts are concentrated in the renal cortex, thus serving as biomarkers of internal exposure to aristolochic acid. Here, we present molecular epidemiologic evidence relating carcinomas of the upper urinary tract to dietary exposure to aristolochic acid. DNA was extracted from the renal cortex and urothelial tumor tissue of 67 patients that underwent nephroureterectomy for carcinomas of the upper urinary tract and resided in regions of known endemic nephropathy. Ten patients from nonendemic regions with carcinomas of the upper urinary tract served as controls. Aristolactam-DNA adducts were quantified by (32)P-postlabeling, the adduct was confirmed by mass spectrometry, and TP53 mutations in tumor tissues were identified by chip sequencing. Adducts were present in 70% of the endemic cohort and in 94% of patients with specific A:T to T:A mutations in TP53. In contrast, neither aristolactam-DNA adducts nor specific mutations were detected in tissues of patients residing in nonendemic regions. Thus, in genetically susceptible individuals, dietary exposure to aristolochic acid is causally related to endemic nephropathy and carcinomas of the upper urinary tract.
Journal of Biological Chemistry | 2010
Yongjun Fan; Kathleen G. Dickman; Wei‐Xing Zong
The high glucose consumption of tumor cells even in an oxygen-rich environment, referred to as the Warburg effect, has been noted as a nearly universal biochemical characteristic of cancer cells. Targeting the glycolysis pathway has been explored as an anti-cancer therapeutic strategy to eradicate cancer based on this fundamental biochemical property of cancer cells. Oncoproteins such as Akt and c-Myc regulate cell metabolism. Accumulating studies have uncovered various molecular mechanisms by which oncoproteins affect cellular metabolism, raising a concern as to whether targeting glycolysis will be equally effective in treating cancers arising from different oncogenic activities. Here, we established a dual-regulatable FL5.12 pre-B cell line in which myristoylated Akt is expressed under the control of doxycycline, and c-Myc, fused to the hormone-binding domain of the human estrogen receptor, is activated by 4-hydroxytamoxifen. Using this system, we directly compared the effect of these oncoproteins on cell metabolism in an isogenic background. Activation of either Akt or c-Myc leads to the Warburg effect as indicated by increased cellular glucose uptake, glycolysis, and lactate generation. When cells are treated with glycolysis inhibitors, Akt sensitizes cells to apoptosis, whereas c-Myc does not. In contrast, c-Myc but not Akt sensitizes cells to the inhibition of mitochondrial function. This is correlated with enhanced mitochondrial activities in c-Myc cells. Hence, although both Akt and c-Myc promote aerobic glycolysis, they differentially affect mitochondrial functions and render cells susceptible to the perturbation of cellular metabolic programs.
Regulatory Peptides | 2000
Sami I. Said; Kathleen G. Dickman
The pathogenesis of tissue injury in disease is a complex process that is only partially understood. We have investigated different models of acute lung injury, representing the clinical entity known as the acute respiratory distress syndrome, and tested their possible modulation by the neuropeptide vasoactive intestinal peptide (VIP). Three major mechanisms of injury appear to be involved in many of these models as common denominators: (1) activation of nuclear transcriptions factor NFkappaB; (2) apoptotic cell death; and (3) excitotoxic phenomena, due to activation of N-methyl-D-aspartate glutamate receptors. These pathogenetic mechanisms and pathways are logical targets of therapeutic intervention. Protection by VIP against lung injury, and against related forms of injury/cell death of neuronal cells and heart muscle, is attributable, in large measure, to the ability of VIP to suppress these mechanisms, and to additional anti-inflammatory and anti-oxidant actions. Finally, a hypothesis is presented for survival-promoting pathways that can be augmented by VIP and the related pituitary adenylyl cyclase-activating peptide.
International Journal of Cancer | 2013
Chung-Hsin Chen; Kathleen G. Dickman; Chao-Yuan Huang; Masaaki Moriya; Chia-Tung Shun; Huai-Ching Tai; Kuo-How Huang; Shuo-Meng Wang; Yuan-Ju Lee; Arthur P. Grollman; Yeong-Shiau Pu
Aristolochic acid (AA), a component of all Aristolochia‐based herbal medicines, is a potent nephrotoxin and human carcinogen associated with upper urinary tract urothelial carcinoma (UUC). To investigate the clinical and pathological characteristics of AA‐induced UUC, this study included 152 UUC patients, 93 of whom had been exposed to AA based on the presence of aristolactam‐DNA adducts in the renal cortex. Gene sequencing was used to identify tumors with A:T‐to‐T:A transversions in TP53, a mutational signature associated with AA. Cases with both aristolactam‐DNA adducts and A:T‐to‐T:A transversions in TP53 were defined as AA‐UUC, whereas patients lacking both of these biomarkers were classified as non‐AA‐UUC. Cases with either biomarker were classified as possible‐AA‐UUC. Forty (26%), 60 (40%), and 52 (34%) patients were classified as AA‐UUC, possible‐AA‐UUC and non‐AA‐UUC, respectively. AA‐UUC patients were younger (median ages: 64, 68, 68 years, respectively; p=0.189), predominately female (65%, 42%, 35%, respectively; p=0.011), had more end‐stage renal disease (28%, 10%, 12%, respectively; p=0.055), and were infrequent smokers (5%, 22%, 33%, respectively; p=0.07) compared to possible‐AA‐UUC and non‐AA‐UUC patients. All 14 patients who developed contralateral UUC had aristolactam‐DNA adducts; ten of these also had signature mutations. The contralateral UUC‐free survival period was shorter in AA‐UUC compared to possible‐ or non‐AA‐UUC (p=0.019 and 0.002, respectively), whereas no differences among groups were observed for bladder cancer recurrence. In conclusion, AA‐UUC patients tend to be younger and female, and have more advanced renal disease. Notably, AA exposure was associated with an increased risk for developing synchronous bilateral and metachronous contralateral UUC.
Chemical Research in Toxicology | 2012
Byeong Hwa Yun; Thomas A. Rosenquist; Viktoriya S. Sidorenko; Charles R. Iden; Chung-Hsin Chen; Yeong-Shiau Pu; Radha Bonala; Francis Johnson; Kathleen G. Dickman; Arthur P. Grollman; Robert J. Turesky
Aristolochic acids (AAs) are a structurally related family of nephrotoxic and carcinogenic nitrophenanthrene compounds found in Aristolochia herbaceous plants, many of which have been used worldwide for medicinal purposes. AAs have been implicated in the etiology of so-called Chinese herbs nephropathy and of Balkan endemic nephropathy. Both of these disease syndromes are associated with carcinomas of the upper urinary tract (UUC). 8-Methoxy-6-nitrophenanthro-[3,4-d]-1,3-dioxolo-5-carboxylic acid (AA-I) is a principal component of Aristolochia herbs. Following metabolic activation, AA-I reacts with DNA to form aristolactam (AL-I)-DNA adducts. We have developed a sensitive analytical method, using ultraperformance liquid chromatography-electrospray ionization/multistage mass spectrometry (UPLC-ESI/MS(n)) with a linear quadrupole ion-trap mass spectrometer, to measure 7-(deoxyadenosin-N(6)-yl) aristolactam I (dA-AL-I) and 7-(deoxyguanosin-N(2)-yl) aristolactam I (dG-AL-I) adducts. Using 10 μg of DNA for measurements, the lower limits of quantitation of dA-AL-I and dG-AL-I are, respectively, 0.3 and 1.0 adducts per 10(8) DNA bases. We have used UPLC-ESI/MS(n) to quantify AL-DNA adducts in tissues of rodents exposed to AA and in the renal cortex of patients with UUC who reside in Taiwan, where the incidence of this uncommon cancer is the highest reported for any country in the world. In human tissues, dA-AL-I was detected at levels ranging from 9 to 338 adducts per 10(8) DNA bases, whereas dG-AL-I was not found. We conclude that UPLC-ESI/MS(n) is a highly sensitive, specific and robust analytical method, positioned to supplant (32)P-postlabeling techniques currently used for biomonitoring of DNA adducts in human tissues. Importantly, UPLC-ESI/MS(n) could be used to document exposure to AA, the toxicant responsible for AA nephropathy and its associated UUC.
Drug Metabolism and Disposition | 2010
Thomas A. Rosenquist; Heidi J. Einolf; Kathleen G. Dickman; Lai Wang; Amanda Smith; Arthur P. Grollman
Aristolochic acids (AAs) are plant-derived nephrotoxins and carcinogens responsible for chronic renal failure and associated urothelial cell cancers in several clinical syndromes known collectively as aristolochic acid nephropathy (AAN). Mice provide a useful model for study of AAN because the renal histopathology of AA-treated mice is strikingly similar to that of humans. AA is also a potent carcinogen in mice with a tissue spectrum somewhat different from that in humans. The toxic dose of AA in mice is higher than that in humans; this difference in susceptibility has been postulated to reflect differing rates of detoxication between the species. Recent studies in mice have shown that the hepatic cytochrome P450 system detoxicates AA, and inducers of the arylhydrocarbon response protect mice from the nephrotoxic effects of AA. The purpose of this study was to determine the role of specific cytochrome P450 (P450) enzymes in AA metabolism in vivo. Of 18 human P450 enzymes we surveyed only two, CYP1A1 and CYP1A2, which were effective in demethylating 8-methoxy-6-nitro-phenanthro-(3,4-d)-1,3-dioxolo-5-carboxylic acid (AAI) to the nontoxic derivative 8-hydroxy-6-nitro-phenanthro-(3,4-d)-1,3-dioxolo-5-carboxylic acid (AAIa). Kinetic analysis revealed similar efficiencies of formation of AAIa by human and rat CYP1A2. We also report here that CYP1A2-deficient mice display increased sensitivity to the nephrotoxic effects of AAI. Furthermore, Cyp1a2 knockout mice accumulate AAI-derived DNA adducts in the kidney at a higher rate than control mice. Differences in bioavailability or hepatic metabolism of AAI, expression of CYP1A2, or efficiency of a competing nitroreduction pathway in vivo may explain the apparent differences between human and rodent sensitivity to AAI.
Journal of Pharmacology and Experimental Therapeutics | 2011
Kathleen G. Dickman; Douglas H. Sweet; Radha Bonala; Tapan Ray; Amy Wu
Consumption of herbal medicines derived from Aristolochia plants is associated with a progressive tubulointerstitial disease known as aristolochic acid (AA) nephropathy. The nephrotoxin produced naturally by these plants is AA-I, a nitrophenanthrene carboxylic acid that selectively targets the proximal tubule. This nephron segment is prone to toxic injury because of its role in secretory elimination of drugs and other xenobiotics. Here, we characterize the handling of AA-I by membrane transporters involved in renal organic anion transport. Uptake assays in heterologous expression systems identified murine organic anion transporters (mOat1, mOat2, and mOat3) as capable of mediating transport of AA-I. Kinetic analyses showed that all three transporters have an affinity for AA-I in the submicromolar range and thus are likely to operate at toxicologically relevant concentrations in vivo. Structure-activity relationships revealed that the carboxyl group is critical for high-affinity interaction of AA-I with mOat1, mOat2, and mOat3, whereas the nitro group is required only by mOat1. Furthermore, the 8-methoxy group, although essential for toxicity, was not requisite for transport. Mouse renal cortical slices avidly accumulated AA-I, achieving slice-to-medium concentration ratios >10. Uptake by slices was sensitive to known mOat1 and mOat3 substrates and the organic anion transport inhibitor probenecid, which also blocked the production of DNA adducts formed with reactive intracellular metabolites of AA-I. Taken together, these findings indicate that OAT family members mediate high-affinity transport of AA-I and may be involved in the site-selective toxicity and renal elimination of this nephrotoxin.