Kathleen Horner
Stanford University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kathleen Horner.
Molecular and Cellular Endocrinology | 2002
Marco Conti; Carsten B Andersen; François J. Richard; Céline Méhats; Sang-Young Chun; Kathleen Horner; Catherine Jin; Alex Tsafriri
The development of the ovarian follicle, oocyte maturation, and ovulation require a complex set of endocrine, paracrine, and autocrine inputs that are translated into the regulation of cyclic nucleotide levels. Changes in intracellular cAMP mediate the gonadotropin regulation of granulosa and theca cell functions. Likewise, a decrease in cAMP concentration in the oocyte has been associated with the resumption of meiosis. Using pharmacological and molecular approaches, we determined that the expression of cyclic nucleotide phosphodiesterases (PDEs), the enzymes that degrade and inactivate cAMP, is compartmentalized in the ovarian follicle of all species studied, with PDE3 present in the oocytes and PDE4s in granulosa cells. The PDE3 expressed in the mouse oocyte was cloned, and the protein expressed in a heterologous system had properties similar to those of a PDE3A derived from somatic cells. Inhibition of the oocyte PDE3 completely blocked oocyte maturation in vitro and in vivo, demonstrating that the activity of this enzyme is essential for oocyte maturation. Heterologous expression of PDE3A in Xenopus oocyte causes morphological changes distinctive of resumption of meiosis (GVBD), as well as activation of mos translation and MAPK phosphorylation. Using mRNA and antibody microinjection in the Xenopus eggs, we have shown that PDE3 is downstream from the kinase PKB/Akt in the pathway that mediates IGF-1 but not progesterone-induced meiotic resumption. The presence of a similar regulatory module in mammalian oocytes is inferred by pharmacological studies with PDE3 inhibitors and measurement of PDE activity. Thus, PDE3 plays an essential role in the signaling pathway that controls resumption of meiosis in amphibians and mammals. Understanding the regulation of this enzyme may shed some light on the signals that trigger oocyte maturation.
Molecular and Cellular Biology | 2007
Minnie Hsieh; Daekee Lee; Sara Panigone; Kathleen Horner; Ruby Chen; Alekos Theologis; David C. Lee; David W. Threadgill; Marco Conti
ABSTRACT In the preovulatory ovarian follicle, mammalian oocytes are maintained in prophase meiotic arrest until the luteinizing hormone (LH) surge induces reentry into the first meiotic division. Dramatic changes in the somatic cells surrounding the oocytes and in the follicular wall are also induced by LH and are necessary for ovulation. Here, we provide genetic evidence that LH-dependent transactivation of the epidermal growth factor receptor (EGFR) is indispensable for oocyte reentry into the meiotic cell cycle, for the synthesis of the extracellular matrix surrounding the oocyte that causes cumulus expansion, and for follicle rupture in vivo. Mice deficient in either amphiregulin or epiregulin, two EGFR ligands, display delayed or reduced oocyte maturation and cumulus expansion. In compound-mutant mice in which loss of one EGFR ligand is associated with decreased signaling from a hypomorphic allele of the EGFR, LH no longer signals oocyte meiotic resumption. Moreover, induction of genes involved in cumulus expansion and follicle rupture is compromised in these mice, resulting in impaired ovulation. Thus, these studies demonstrate that LH induction of epidermal growth factor-like growth factors and EGFR transactivation are essential for the regulation of a critical physiological process such as ovulation and provide new strategies for manipulation of fertility.
Circulation Research | 2006
Francesca Rochais; Aniella Abi-Gerges; Kathleen Horner; Florence Lefebvre; Dermot M. F. Cooper; Marco Conti; Rodolphe Fischmeister; Grégoire Vandecasteele
Compartmentation of cAMP is thought to generate the specificity of Gs-coupled receptor action in cardiac myocytes, with phosphodiesterases (PDEs) playing a major role in this process by preventing cAMP diffusion. We tested this hypothesis in adult rat ventricular myocytes by characterizing PDEs involved in the regulation of cAMP signals and L-type Ca2+ current (ICa,L) on stimulation with &bgr;1-adrenergic receptors (&bgr;1-ARs), &bgr;2-ARs, glucagon receptors (Glu-Rs) and prostaglandin E1 receptors (PGE1-Rs). All receptors but PGE1-R increased total cAMP, and inhibition of PDEs with 3-isobutyl-1-methylxanthine strongly potentiated these responses. When monitored in single cells by high-affinity cyclic nucleotide–gated (CNG) channels, stimulation of &bgr;1-AR and Glu-R increased cAMP, whereas &bgr;2-AR and PGE1-R had no detectable effect. Selective inhibition of PDE3 by cilostamide and PDE4 by Ro 20-1724 potentiated &bgr;1-AR cAMP signals, whereas Glu-R cAMP was augmented only by PD4 inhibition. PGE1-R and &bgr;2-AR generated substantial cAMP increases only when PDE3 and PDE4 were blocked. For all receptors except PGE1-R, the measurements of ICa,L closely matched the ones obtained with CNG channels. Indeed, PDE3 and PDE4 controlled &bgr;1-AR and &bgr;2-AR regulation of ICa,L, whereas only PDE4 controlled Glu-R regulation of ICa,L thus demonstrating that receptor–PDE coupling has functional implications downstream of cAMP. PGE1 had no effect on ICa,L even after blockade of PDE3 or PDE4, suggesting that other mechanisms prevent cAMP produced by PGE1 to diffuse to L-type Ca2+ channels. These results identify specific functional coupling of individual PDE families to Gs-coupled receptors as a major mechanism enabling cardiac cells to generate heterogeneous cAMP signals in response to different hormones.
Genes & Development | 2011
J. Chen; Collin Melton; Nayoung Suh; Jeong Su Oh; Kathleen Horner; Fang Xie; Claudio Sette; Robert Blelloch; Marco Conti
Oocyte maturation, fertilization, and early embryonic development occur in the absence of gene transcription. Therefore, it is critical to understand at a global level the post-transcriptional events that are driving these transitions. Here we used a systems approach by combining polysome mRNA profiling and bioinformatics to identify RNA-binding motifs in mRNAs that either enter or exit the polysome pool during mouse oocyte maturation. Association of mRNA with the polysomes correlates with active translation. Using this strategy, we identified highly specific patterns of mRNA recruitment to the polysomes that are synchronized with the cell cycle. A large number of the mRNAs recovered with translating ribosomes contain motifs for the RNA-binding proteins DAZL (deleted in azoospermia-like) and CPEB (cytoplasmic polyadenylation element-binding protein). Although a Dazl role in early germ cell development is well established, no function has been described during oocyte-to-embryo transition. We demonstrate that CPEB1 regulates Dazl post-transcriptionally, and that DAZL is essential for meiotic maturation and embryonic cleavage. In the absence of DAZL synthesis, the meiotic spindle fails to form due to disorganization of meiotic microtubules. Therefore, Cpeb1 and Dazl function in a progressive, self-reinforcing pathway to promote oocyte maturation and early embryonic development.
Developmental Biology | 2003
Kathleen Horner; Gabriel Livera; Mary D Hinckley; Kien Trinh; Daniel R. Storm; Marco Conti
The intracellular levels of cAMP play a critical role in the meiotic arrest of mammalian oocytes. However, it is debated whether this second messenger is produced endogenously by the oocytes or is maintained at levels inhibitory to meiotic resumption via diffusion from somatic cells. Here, we demonstrate that adenylyl cyclase genes and corresponding proteins are expressed in rodent oocytes. The mRNA coding for the AC3 isoform of adenylyl cyclase was detected in rat and mouse oocytes by RT-PCR and by in situ hybridization. The expression of AC3 protein was confirmed by immunocytochemistry and immunofluorescence analysis in oocytes in situ. Cyclic AMP accumulation in denuded oocytes was increased by incubation with forskolin, and this stimulation was abolished by increasing intraoocyte Ca(2+) with the ionophore A23187. The Ca(2+) effects were reversed by an inhibitor of Ca(2+), calmodulin-dependent kinase II. These regulations of cAMP levels indicate that the major cyclase that produces cAMP in the rat oocyte has properties identical to those of recombinant or endogenous AC3 expressed in somatic cells. Furthermore, mouse oocytes deficient in AC3 show signs of a defect in meiotic arrest in vivo and accelerated spontaneous maturation in vitro. Collectively, these data provide evidence that an adenylyl cyclase is functional in rodent oocytes and that its activity is involved in the control of oocyte meiotic arrest.
The EMBO Journal | 2008
Wito Richter; Peter Day; Rani Agrawal; Matthew D. Bruss; Sébastien Granier; Yvonne L Wang; Søren Rasmussen; Kathleen Horner; Ping Wang; Tao Lei; Andrew J. Patterson; Brian K. Kobilka; Marco Conti
β1‐ and β2‐adrenergic receptors (βARs) are highly homologous, yet they play clearly distinct roles in cardiac physiology and pathology. Myocyte contraction, for instance, is readily stimulated by β1AR but not β2AR signaling, and chronic stimulation of the two receptors has opposing effects on myocyte apoptosis and cell survival. Differences in the assembly of macromolecular signaling complexes may explain the distinct biological outcomes. Here, we demonstrate that β1AR forms a signaling complex with a cAMP‐specific phosphodiesterase (PDE) in a manner inherently different from a β2AR/β‐arrestin/PDE complex reported previously. The β1AR binds a PDE variant, PDE4D8, in a direct manner, and occupancy of the receptor by an agonist causes dissociation of this complex. Conversely, agonist binding to the β2AR is a prerequisite for the recruitment of a complex consisting of β‐arrestin and the PDE4D variant, PDE4D5, to the receptor. We propose that the distinct modes of interaction with PDEs result in divergent cAMP signals in the vicinity of the two receptors, thus, providing an additional layer of complexity to enforce the specificity of β1‐ and β2‐adrenoceptor signaling.
Developmental Biology | 2008
Sergio Vaccari; Kathleen Horner; Lisa M. Mehlmann; Marco Conti
Although it is established that cAMP accumulation plays a pivotal role in preventing meiotic resumption in mammalian oocytes, the mechanisms controlling cAMP levels in the female gamete have remained elusive. Both production of cAMP via GPCRs/Gs/adenylyl cyclases endogenous to the oocyte as well as diffusion from the somatic compartment through gap junctions have been implicated in maintaining cAMP at levels that preclude maturation. Here we have used a genetic approach to investigate the different biochemical pathways contributing to cAMP accumulation and maturation in mouse oocytes. Because cAMP hydrolysis is greatly decreased and cAMP accumulates above a threshold, oocytes deficient in PDE3A do not resume meiosis in vitro or in vivo, resulting in complete female infertility. In vitro, inactivation of Gs or downregulation of the GPCR GPR3 causes meiotic resumption in the Pde3a null oocytes. Crossing of Pde3a(-/-) mice with Gpr3(-/-) mice causes partial recovery of female fertility. Unlike the complete meiotic block of the Pde3a null mice, oocyte maturation is restored in the double knockout, although it occurs prematurely as described for the Gpr3(-/-) mouse. The increase in cAMP that follows PDE3A ablation is not detected in double mutant oocytes, confirming that GPR3 functions upstream of PDE3A in the regulation of oocyte cAMP. Metabolic coupling between oocytes and granulosa cells was not affected in follicles from the single or double mutant mice, suggesting that diffusion of cAMP is not prevented. Finally, simultaneous ablation of GPR12, an additional receptor expressed in the oocyte, does not modify the Gpr3(-/-) phenotype. Taken together, these findings demonstrate that Gpr3 is epistatic to Pde3a and that fertility as well as meiotic arrest in the PDE3A-deficient oocyte is dependent on the activity of GPR3. These findings also suggest that cAMP diffusion through gap junctions or the activity of additional receptors is not sufficient by itself to maintain the meiotic arrest in the mouse oocyte.
Nature Cell Biology | 2013
J. Chen; Simona Torcia; Fang Xie; Chih-Jen Lin; Hakan Cakmak; Federica Franciosi; Kathleen Horner; Courtney Onodera; Jun S. Song; Marcelle I. Cedars; Miguel Ramalho-Santos; Marco Conti
Germ cells divide and differentiate in a unique local microenvironment under the control of somatic cells. Signals released in this niche instruct oocyte reentry into the meiotic cell cycle. Once initiated, the progression through meiosis and the associated programme of maternal messenger RNA translation are thought to be cell autonomous. Here we show that translation of a subset of maternal mRNAs critical for embryo development is under the control of somatic cell inputs. Translation of specific maternal transcripts increases in oocytes cultured in association with somatic cells and is sensitive to EGF-like growth factors that act only on the somatic compartment. In mice deficient in amphiregulin, decreased fecundity and oocyte developmental competence is associated with defective translation of a subset of maternal mRNAs. These somatic cell signals that affect translation require activation of the PI(3)K–AKT–mTOR pathway. Thus, mRNA translation depends on somatic cell cues that are essential to reprogramme the oocyte for embryo development.
Journal of Biological Chemistry | 2008
Matthew D. Bruss; Wito Richter; Kathleen Horner; S.-L. Catherine Jin; Marco Conti
One of the defining properties of β2-adrenergic receptor (β2AR) signaling is the transient and rapidly reversed accumulation of cAMP. Here we have investigated the contribution of different PDE4 proteins to the generation of this transient response. To this aim, mouse embryonic fibroblasts deficient in PDE4A, PDE4B, or PDE4D were generated, and the regulation of PDE activity, the accumulation of cAMP, and CREB phosphorylation in response to isoproterenol were monitored. Ablation of PDE4D, but not PDE4A or PDE4B, had a major effect on the β-agonist-induced PDE activation, with only a minimal increase in PDE activity being retained in PDE4D knock-out (KO) cells. Accumulation of cAMP was markedly enhanced, and the kinetics of cAMP accumulation were altered in their properties in PDE4DKO but not PDE4BKO cells. Modest effects were observed in PDE4AKO mouse embryonic fibroblasts. The return to basal levels of both cAMP accumulation and CREB phosphorylation was greatly delayed in the PDE4DKO cells, suggesting that PDE4D is critical for dissipation of the β2AR stimulus. This effect of PDE4D ablation was in large part due to inactivation of a negative feedback mechanism consisting of the PKA-mediated activation of PDE4D in response to elevated cAMP levels, as indicated by experiments using the cAMP-dependent protein kinase inhibitors H89 and PKI. Finally, PDE4D ablation affected the kinetics of β2AR desensitization as well as the interaction of the receptor with Gαi. These findings demonstrate that PDE4D plays a major role in shaping the β2AR signal.
Journal of Biological Chemistry | 2011
Brigitte E. Blackman; Kathleen Horner; Julia Heidmann; Dan Wang; Wito Richter; Thomas C. Rich; Marco Conti
Signaling through cAMP regulates most cellular functions. The spatiotemporal control of cAMP is, therefore, crucial for differential regulation of specific cellular targets. Here we investigated the consequences of PDE4B or PDE4D gene ablation on cAMP signaling at a subcellular level using mouse embryonic fibroblasts. PDE4B ablation had no effect on the global or bulk cytosol accumulation of cAMP but increased both basal and hormone-dependent cAMP in a near-membrane pool. Conversely, PDE4D ablation enhanced agonist-induced cAMP accumulation in the bulk cytosol as well as at the plasma membrane. Both PDE4B and PDE4D ablation significantly modified the time course and the level of isoproterenol-induced phosphorylation of vasodilator-stimulated phosphoprotein, a membrane cytoskeletal component. A second membrane response through Toll-like receptor signaling, however, was only affected by PDE4B ablation. PDE4D but not PDE4B ablation significantly prolonged cAMP-response element-binding protein-mediated transcription. These findings demonstrate that PDE4D and PDE4B have specialized functions in mouse embryonic fibroblasts with PDE4B controlling cAMP in a discrete subdomain near the plasma membrane.