Kathleen M. Beckingham
Rice University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kathleen M. Beckingham.
Science | 2010
Saunab Ghosh; Sergei M. Bachilo; Rebecca A. Simonette; Kathleen M. Beckingham; R. Bruce Weisman
Better Imaging When Separated A fluorescent probe works better if its absorption and emission wavelengths are well separated; otherwise, the probe tends to reabsorb its own emission. Ghosh et al. (p. 1656, published online 25 November) found that oxygen doping of semiconducting single-wall carbon nanotubes (SWCNTs) improved the characteristics of these materials as imaging probes in the near-infrared. Exposure of SWCNTs to ozone and then to visible light caused the emission wavelength to be 10 to 15% longer than the absorption wavelength. They imaged these probes and untreated SWCNTs in cultured human cells and found an ∼20-fold improvement in contrast. Contrast can be improved in bioimaging applications by separating the emission and absorption wavelengths. Controlled chemical modifications of single-walled carbon nanotubes (SWCNTs) that tune their useful properties have been sought for multiple applications. We found that beneficial optical changes in SWCNTs resulted from introducing low concentrations of oxygen atoms. Stable covalently oxygen-doped nanotubes were prepared by exposure to ozone and then light. Treated samples showed distinct, structure-specific near-infrared fluorescence at wavelengths 10 to 15% longer than displayed by pristine semiconducting SWCNTs. Dopant sites harvest light energy absorbed in undoped nanotube regions by trapping mobile excitons. The oxygen-doped SWCNTs are much easier to detect and image than pristine SWCNTs because they give stronger near-infrared emission and do not absorb at the shifted emission wavelength.
Journal of Cell Science | 2010
Martin P Kracklauer; Heather M. Wiora; William J. Deery; Xin Chen; Benjamin Bolival; Dwight Romanowicz; Rebecca A. Simonette; Margaret T. Fuller; Janice A. Fischer; Kathleen M. Beckingham
Maintaining the proximity of centrosomes to nuclei is important in several cellular contexts, and LINC complexes formed by SUN and KASH proteins are crucial in this process. Here, we characterize the presumed Drosophila ortholog of the mammalian SUN protein, sperm-associated antigen 4 (Spag4, previously named Giacomo), and demonstrate that Spag4 is required for centriole and nuclear attachment during spermatogenesis. Production of spag4 mRNA is limited to the testis, and Spag4 protein shows a dynamic pattern of association with the germline nuclei, including a concentration of protein at the site of attachment of the single spermatid centriole. In the absence of Spag4, nuclei and centrioles or basal bodies (BBs) dissociate from each other after meiosis. This role of Spag4 in centriolar attachment does not involve either of the two KASH proteins of the Drosophila genome (Klarsicht and MSP-300), but does require the coiled-coil protein Yuri Gagarin. Yuri shows an identical pattern of localization at the nuclear surface to Spag4 during spermatogenesis, and epistasis studies show that the activities of Yuri and dynein-dynactin are downstream of spag4 in this centriole attachment pathway. The later defects in spermatogenesis seen for yuri and spag4 mutants are similar, suggesting they could be secondary to initial disruption of events at the nuclear surface.
Journal of Cell Science | 2008
Michael J. Texada; Rebecca A. Simonette; Cassidy B. Johnson; William J. Deery; Kathleen M. Beckingham
Males of the genus Drosophila produce sperm of remarkable length. Investigation of giant sperm production in Drosophila melanogaster has demonstrated that specialized actin and microtubule structures play key roles. The gene yuri gagarin (yuri) encodes a novel protein previously identified through its role in gravitaxis. A male-sterile mutation of yuri has revealed roles for Yuri in the functions of the actin and tubulin structures of spermatogenesis. Yuri is a component of the motile actin cones that individualize the spermatids and is essential for their formation. Furthermore, Yuri is required for actin accumulation in the dense complex, a microtubule-rich structure on the sperm nuclei thought to strengthen the nuclei during elongation. In the yuri mutant, late clusters of syncytial nuclei are deformed and disorganized. The basal bodies are also mispositioned on the nuclei, and the association of a specialized structure, the centriolar adjunct (CA), with the basal body is lost. Some of these nuclear defects might underlie a further unexpected abnormality: sperm nuclei occasionally locate to the wrong ends of the spermatid cysts. The structure of the axonemes that grow out from the basal bodies is affected in the yuri mutant, suggesting a possible role for the CA in axoneme formation.
The Journal of Comparative Neurology | 2007
Dean A. Baker; Kathleen M. Beckingham; James Douglas Armstrong
In animals, sensing gravity is supported by mechanosensory neurons that send information to the central brain for integration along with other modalities. In Drosophila, candidate sensory organs for detecting the gravity vector were predicted from the results of a recent forward genetic screen. This analysis also suggested possible roles for the central complex and antennal system in Drosophila. Using the same vertical maze assay employed in the original screen, we investigated the roles of these candidate neural structures by spatial and temporal inactivation of synaptic transmission with the GAL4/UAS‐shibire[ts1] system. We correlate changes in the maze behavior of flies with specific inhibition of synaptic transmission for key brain neuropil that includes the central complex and antenno‐glomerular tract. Further, our results point toward a minimal, or nonexistent, role for the mushroom bodies. J. Comp. Neurol. 501:756–764, 2007.
Advances in Genetics | 2005
Kathleen M. Beckingham; Michael J. Texada; Dean A. Baker; Ravi Munjaal; J. Douglas Armstrong
Gravity is a constant stimulus for life on Earth and most organisms have evolved structures to sense gravitational force and incorporate its influence into their behavioral repertoire. Here we focus attention on animals and their diverse structures for perceiving and responding to the gravitational vector-one of the few static reference stimuli for any mobile organism. We discuss vertebrate, arthropod, and nematode models from the perspective of the role that genetics is playing in our understanding of graviperception in each system. We describe the key sensory structures in each class of organism and present what is known about the genetic control of development of these structures and the molecular signaling pathways operating in the mature organs. We also discuss the role of large genetic screens in identifying specific genes with roles in mechanosensation and graviperception.
Journal of Biological Chemistry | 2006
Deborah J. Frank; Stephen R. Martin; Bridget N. T. Gruender; Yung-Sheng R. Lee; Rebecca A. Simonette; Peter M. Bayley; Kathryn G. Miller; Kathleen M. Beckingham
Myosin VI, a ubiquitously expressed unconventional myosin, has roles in a broad array of biological processes. Unusual for this motor family, myosin VI moves toward the minus (pointed) end of actin filaments. Myosin VI has two light chain binding sites that can both bind calmodulin (CaM). However unconventional myosins could use tissue-specific light chains to modify their activity. In the Drosophila testis, myosin VI is important for maintenance of moving actin structures, called actin cones, which mediate spermatid individualization. A CaM-related protein, Androcam (Acam), is abundantly expressed in the testis and like myosin VI, accumulates on these cones. We have investigated the possibility that Acam is a testis-specific light chain of Drosophila myosin VI. We find that Acam and myosin VI precisely colocalize at the leading edge of the actin cones and that myosin VI is necessary for this Acam localization. Further, myosin VI and Acam co-immunoprecipitate from the testis and interact in yeast two-hybrid assays. Finally Acam binds with high affinity to peptide versions of both myosin VI light chain binding sites. In contrast, although Drosophila CaM also shows high affinity interactions with these peptides, we cannot detect a CaM/myosin VI interaction in the testis. We conclude that Acam and not CaM acts as a myosin VI light chain in the Drosophila testis and hypothesize that it may alter the regulation of myosin VI in this tissue.
PLOS ONE | 2014
Katherine Taylor; Kurt Kleinhesselink; Michael D. George; Rachel Morgan; Tangi Smallwood; Ann S. Hammonds; Patrick M. Fuller; Perot Saelao; Jeff Alley; Allen G. Gibbs; Deborah K. Hoshizaki; Laurence von Kalm; Charles A. Fuller; Kathleen M. Beckingham; Deborah A. Kimbrell
Space travel presents unlimited opportunities for exploration and discovery, but requires better understanding of the biological consequences of long-term exposure to spaceflight. Immune function in particular is relevant for space travel. Human immune responses are weakened in space, with increased vulnerability to opportunistic infections and immune-related conditions. In addition, microorganisms can become more virulent in space, causing further challenges to health. To understand these issues better and to contribute to design of effective countermeasures, we used the Drosophila model of innate immunity to study immune responses in both hypergravity and spaceflight. Focusing on infections mediated through the conserved Toll and Imd signaling pathways, we found that hypergravity improves resistance to Toll-mediated fungal infections except in a known gravitaxis mutant of the yuri gagarin gene. These results led to the first spaceflight project on Drosophila immunity, in which flies that developed to adulthood in microgravity were assessed for immune responses by transcription profiling on return to Earth. Spaceflight alone altered transcription, producing activation of the heat shock stress system. Space flies subsequently infected by fungus failed to activate the Toll pathway. In contrast, bacterial infection produced normal activation of the Imd pathway. We speculate on possible linkage between functional Toll signaling and the heat shock chaperone system. Our major findings are that hypergravity and spaceflight have opposing effects, and that spaceflight produces stress-related transcriptional responses and results in a specific inability to mount a Toll-mediated infection response.
Genetics | 2014
Dahong Chen; Chunjing Qu; Sonia M. Bjorum; Kathleen M. Beckingham; Randall S. Hewes
Peptidergic neurons are a group of neuronal cells that synthesize and secrete peptides to regulate a variety of biological processes. To identify genes controlling the development and function of peptidergic neurons, we conducted a screen of 545 splice-trap lines and identified 28 loci that drove expression in peptidergic neurons when crossed to a GFP reporter transgene. Among these lines, an insertion in the alan shepard (shep) gene drove expression specifically in most peptidergic neurons. shep transcripts and SHEP proteins were detected primarily and broadly in the central nervous system (CNS) in embryos, and this expression continued into the adult stage. Loss of shep resulted in late pupal lethality, reduced adult life span, wing expansion defects, uncoordinated adult locomotor activities, rejection of males by virgin females, and reduced neuropil area and reduced levels of multiple presynaptic markers throughout the adult CNS. Examination of the bursicon neurons in shep mutant pharate adults revealed smaller somata and fewer axonal branches and boutons, and all of these cellular phenotypes were fully rescued by expression of the most abundant wild-type shep isoform. In contrast to shep mutant animals at the pharate adult stage, shep mutant larvae displayed normal bursicon neuron morphologies. Similarly, shep mutant adults were uncoordinated and weak, while shep mutant larvae displayed largely, although not entirely, normal locomotor behavior. Thus, shep played an important role in the metamorphic development of many neurons.
Protein Science | 2009
Bo Wang; Stephen R. Martin; Rhonda A. Newman; Susan L. Hamilton; Madeline A. Shea; Peter M. Bayley; Kathleen M. Beckingham
A mutation (Cam7) to the single endogenous calmodulin gene of Drosophila generates a mutant protein with valine 91 changed to glycine (V91G D‐CaM). This mutation produces a unique pupal lethal phenotype distinct from that of a null mutation. Genetic studies indicate that the phenotype reflects deregulation of calcium fluxes within the larval muscles, leading to hypercontraction followed by muscle failure. We investigated the biochemical properties of V91G D‐CaM. The effects of the mutation on free CaM are minor: Calcium binding, and overall secondary and tertiary structure are indistinguishable from those of wild type. A slight destabilization of the C‐terminal domain is detectable in the calcium‐free (apo‐) form, and the calcium‐bound (holo‐) form has a somewhat lower surface hydrophobicity. These findings reinforce the indications from the in vivo work that interaction with a specific CaM target(s) underlies the mutant defects. In particular, defective regulation of ryanodine receptor (RyR) channels was indicated by genetic interaction analysis. Studies described here establish that the putative CaM binding region of the Drosophila RyR (D‐RyR) binds wild‐type D‐CaM comparably to the equivalent CaM‐RyR interactions seen for the mammalian skeletal muscle RyR channel isoform (RYR1). The V91G mutation weakens the interaction of both apo‐ and holo‐D‐CaM with this binding region, and decreases the enhancement of the calcium‐binding affinity of CaM that is detectable in the presence of the RyR target peptide. The predicted functional consequences of these changes are consonant with the in vivo phenotype, and indicate that D‐RyR is one, if not the major, target affected by the V91G mutation in CaM.
PLOS ONE | 2013
Sonia M. Bjorum; Rebecca A. Simonette; Jennifer E. Wang; Benjamin M. Lewis; Michael H. Trejo; Keith A. Hanson; Kathleen M. Beckingham
Innate behaviors have their origins in the specification of neural fates during development. Within Drosophila, BTB (Bric-a-brac,Tramtrack, Broad) domain proteins such as Fruitless are known to play key roles in the neural differentiation underlying such responses. We previously identified a gene, which we have termed jim lovell (lov), encoding a BTB protein with a role in gravity responses. To understand more fully the behavioral roles of this gene we have investigated its function through several approaches. Transcript and protein expression patterns have been examined and behavioral phenotypes of new lov mutations have been characterized. Lov is a nuclear protein, suggesting a role as a transcriptional regulator, as for other BTB proteins. In late embryogenesis, Lov is expressed in many CNS and PNS neurons. An examination of the PNS expression indicates that lov functions in the late specification of several classes of sensory neurons. In particular, only two of the five abdominal lateral chordotonal neurons express Lov, predicting functional variation within this highly similar group. Surprisingly, Lov is also expressed very early in embryogenesis in ways that suggests roles in morphogenetic movements, amnioserosa function and head neurogenesis. The phenotypes of two new lov mutations that delete adjacent non-coding DNA regions are strikingly different suggesting removal of different regulatory elements. In lov47, Lov expression is lost in many embryonic neurons including the two lateral chordotonal neurons. lov47 mutant larvae show feeding and locomotor defects including spontaneous backward movement. Adult lov47 males perform aberrant courtship behavior distinguished by courtship displays that are not directed at the female. lov47 adults also show more defective negative gravitaxis than the previously isolated lov91Y mutant. In contrast, lov66 produces largely normal behavior but severe female sterility associated with ectopic lov expression in the ovary. We propose a negative regulatory role for the DNA deleted in lov66.