Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kathleen Ottina is active.

Publication


Featured researches published by Kathleen Ottina.


Science | 2011

The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling

Peggy P. Hsu; Seong A. Kang; Jonathan Rameseder; Yi Zhang; Kathleen Ottina; Daniel Lim; Timothy R. Peterson; Yongmun Choi; Nathanael S. Gray; Michael B. Yaffe; Jarrod A. Marto; David M. Sabatini

A search for substrates of a growth-promoting kinase revealed a regulatory feedback loop involved in tumor suppression. The mammalian target of rapamycin (mTOR) protein kinase is a master growth promoter that nucleates two complexes, mTORC1 and mTORC2. Despite the diverse processes controlled by mTOR, few substrates are known. We defined the mTOR-regulated phosphoproteome by quantitative mass spectrometry and characterized the primary sequence motif specificity of mTOR using positional scanning peptide libraries. We found that the phosphorylation response to insulin is largely mTOR dependent and that mTOR exhibits a unique preference for proline, hydrophobic, and aromatic residues at the +1 position. The adaptor protein Grb10 was identified as an mTORC1 substrate that mediates the inhibition of phosphoinositide 3-kinase typical of cells lacking tuberous sclerosis complex 2 (TSC2), a tumor suppressor and negative regulator of mTORC1. Our work clarifies how mTORC1 inhibits growth factor signaling and opens new areas of investigation in mTOR biology.


Nature | 2011

Functional genomics reveal that the serine synthesis pathway is essential in breast cancer

Richard Possemato; Kevin Marks; Yoav D. Shaul; Michael E. Pacold; Dohoon Kim; Kivanc Birsoy; Shalini Sethumadhavan; Hin-Koon Woo; Hyun Gyung Jang; Abhishek K. Jha; Walter W. Chen; Francesca G. Barrett; Nicolas Stransky; Zhi-Yang Tsun; Glenn S. Cowley; Jordi Barretina; Nada Y. Kalaany; Peggy P. Hsu; Kathleen Ottina; Albert M. Chan; Bingbing Yuan; Levi A. Garraway; David E. Root; Mari Mino-Kenudson; Elena F. Brachtel; Edward M. Driggers; David M. Sabatini

Cancer cells adapt their metabolic processes to drive macromolecular biosynthesis for rapid cell growth and proliferation (1,2). RNAi-based loss of function screening has proven powerful for the identification of novel and interesting cancer targets, and recent studies have used this technology in vivo to identify novel tumor suppressor genes (3). Here, we developed a method for identifying novel cancer targets via negative selection RNAi screening in solid tumours. Using this method, we screened a set of metabolic genes associated with aggressive breast cancer and stemness to identify those required for in vivo tumourigenesis. Among the genes identified, phosphoglycerate dehydrogenase (PHGDH) is in a genomic region of recurrent copy number gain in breast cancer and PHGDH protein levels are elevated in 70% of ER-negative breast cancers. PHGDH catalyzes the first step in the serine biosynthesis pathway, and breast cancer cells with high PHGDH expression have elevations in serine synthesis flux. Suppression of PHGDH in cell lines with elevated PHGDH expression, but not those without, causes a strong decrease in cell proliferation and a reduction in serine synthesis. We find that PHGDH suppression does not affect intracellular serine levels, but causes a drop in the levels of alpha-ketoglutarate, another output of the pathway and a TCA cycle intermediate. In cells with high PHGDH expression, the serine synthesis pathway contributes approximately 50% of the total anaplerotic flux of glutamine into the TCA cycle. These results reveal that certain breast cancers are dependent upon increased serine pathway flux caused by PHGDH over-expression and demonstrate the utility of in vivo negative selection RNAi screens for finding potential anticancer targets.


Science | 2013

mTORC1 Phosphorylation Sites Encode Their Sensitivity to Starvation and Rapamycin

Seong A. Kang; Michael E. Pacold; Christopher L. Cervantes; Daniel Lim; Hua Jane Lou; Kathleen Ottina; Nathanael S. Gray; Benjamin E. Turk; Michael B. Yaffe; David M. Sabatini

Introduction The mechanistic target of rapamycin (mTOR) complex 1 (mTORC1) protein kinase promotes cell growth by controlling major anabolic and catabolic processes in response to a variety of environmental and intracellular stimuli, and is deregulated in aging and human diseases such as cancer and diabetes. Rapamycin, an allosteric inhibitor of mTORC1, is used clinically in organ transplantation and the treatment of certain cancers. Exactly how rapamycin perturbs mTORC1 signaling is poorly understood and it remains unknown why certain mTORC1 phosphorylation sites are sensitive to the drug whereas others are not. Here, we test the hypothesis that the inherent capacity of a phosphorylation site to serve as an mTORC1 substrate (a property we call substrate quality) is a key determinant of its sensitivity to rapamycin as well as nutrient and growth factor starvation. mTORC1 Phosphorylation sites encode their sensitivity to physiological and pharmacological modulators of mTORC1. Substrate quality is an important determinant of how effectively mTORC1 phosphorylates its substrates in the response to both pharmacological and natural regulators ofthe kinase. Methods We measured the in vitro kinase activity of mTORC1 towards short synthetic peptides encompassing single mTORC1 phosphorylation sites and refined the established mTORC1 phosphorylation motif. We introduced subtle mutations into bona fide mTORC1 phosphorylation sites that we found to enhance or reduce their phosphorylation by mTORC1 in vitro and monitored the corresponding changes in the sensitivity of these sites to rapamycin treatment within cells. Finally, we assessed whether the modifications of the mTORC1 phosphorylation sites also altered their sensitivities to nutrient and growth factor starvation. Results The response of an mTORC1 phosphorylation site to rapamycin treatment should depend on the balance between the activity of mTORC1 and of the protein phosphatase(s) that dephosphorylates it. We found that the in vitro kinase activity of mTORC1 toward peptides containing established phosphorylation sites strongly correlates with the resistance of the sites to rapamycin within cells. Moreover, the relative affinities of the mTOR kinase domain for the peptides also correlated with its capacity to phosphorylate them. In addition to a preference for either proline or a nonproline hydrophobic residue in the +1 position, our refinement of the mTORC1 phosphorylation motif revealed preferences for noncharged residues surrounding the phosphoacceptor site and for serine over threonine as the phosphoacceptor. Utilizing this improved understanding of the sequence motif specificity of mTORC1, we were able to manipulate mTORC1 activity toward its phosphorylation sites in vitro and alter their sensitivities to rapamycin treatment within cells. Interestingly, mTORC1 phosphorylation sites also varied in their sensitivities to nutrient and growth factor levels and manipulations in substrate quality were sufficient to alter their responses to nutrient and growth factor starvation. Discussion Our findings suggest that the sequence composition of an mTORC1 phosphorylation site, including the presence of serine or threonine as the phosphoacceptor, is one of the key determinants of whether the site is a good or poor mTORC1 substrate within cells. Even though the phosphorylation of mTORC1 sites is subject to varied regulatory mechanisms, we propose that differences in substrate quality are one mechanism for allowing downstream effectors of mTORC1 to respond differentially to temporal and intensity changes in the levels of nutrients and growth factors as well as pharmacological inhibitors such as rapamycin. Such differential responses are likely important for mTORC1 to coordinate and appropriately time the myriad processes that make up the vast starvation program it controls. Lastly, it is likely that the form of hierarchical regulation we describe for mTORC1 substrates also exists in other kinase-driven signaling pathways. Not mTORCing Inhibition of the protein kinase complex mTORC1 has potentially beneficial therapeutic affects that include inhibition of cancer and extension of life span. However, effects of its inhibition in vivo have sometimes been disappointing. One reason may be that the well-studied inhibitor of mTORC1, rapamycin, inhibits some effects of mTORC1 but not others. In line with this idea, Kang et al. (1236566) show that the effect of rapamycin depends on the substrate. Characteristics of the phosphorylation sites on various substrates caused them to be phosphorylated with different efficiency by mTORC1. The substrates that were most efficiently phosphorylated were resistant to inhibition of mTORC1. The results explain how various sites, sometimes within the same protein, can differ in their sensitivity to rapamycin. Inhibition of a protein kinase differentially affects its targets, depending on phosphorylation site characteristics. The mechanistic target of rapamycin (mTOR) complex 1 (mTORC1) protein kinase promotes growth and is the target of rapamycin, a clinically useful drug that also prolongs life span in model organisms. A persistent mystery is why the phosphorylation of many bona fide mTORC1 substrates is resistant to rapamycin. We find that the in vitro kinase activity of mTORC1 toward peptides encompassing established phosphorylation sites varies widely and correlates strongly with the resistance of the sites to rapamycin, as well as to nutrient and growth factor starvation within cells. Slight modifications of the sites were sufficient to alter mTORC1 activity toward them in vitro and to cause concomitant changes within cells in their sensitivity to rapamycin and starvation. Thus, the intrinsic capacity of a phosphorylation site to serve as an mTORC1 substrate, a property we call substrate quality, is a major determinant of its sensitivity to modulators of the pathway. Our results reveal a mechanism through which mTORC1 effectors can respond differentially to the same signals.


Science Signaling | 2014

Systematic identification of signaling pathways with potential to confer anticancer drug resistance.

Colin A. Martz; Kathleen Ottina; Katherine R. Singleton; Jeff S. Jasper; Suzanne E. Wardell; Ashley Peraza-Penton; Grace R. Anderson; Peter S. Winter; Tim Wang; Holly M. Alley; Lawrence N. Kwong; Zachary A. Cooper; Michael T. Tetzlaff; Pei Ling Chen; Jeffrey C. Rathmell; Keith T. Flaherty; Jennifer A. Wargo; Donald P. McDonnell; David M. Sabatini; Kris C. Wood

Pathway-centric screening reveals new mechanisms of drug resistance and combination therapeutic strategies. Finding New Targets for Drug-Resistant Cancers The development of drug resistance is a common problem in cancer patients. Knowing how drug resistance emerged in a tumor can inform clinical strategy. Martz et al. devised a drug screen to identify pathways of resistance when cancer cells were treated with drugs that are used in the clinic. Along with pathways known to mediate drug resistance, such as the MAPK and PI3K pathways, activation of the Notch1 pathway caused drug resistance in various types of cancer cells in culture. Inhibiting Notch1 signaling restored drug efficacy in cells in culture and in xenografts in mice. Intriguingly, Notch signaling mediated drug resistance to an estrogen receptor–targeted therapy used in breast cancer and to a kinase-targeted therapy used in melanoma, suggesting that this single pathway may be important in multiple types of drug-resistant cancers. Indeed, tumors of some patients with relapsed breast cancer or melanoma had increased markers of Notch1 signaling. In the Research Article by Winter et al. also in this issue, this screening method identified a pathway of drug resistance in bone marrow cancer. More generally, by screening entire signaling pathways instead of individual genes, the work of Martz et al. shows how we can quickly map pathways to the diverse properties of cancer cells. Cancer cells can activate diverse signaling pathways to evade the cytotoxic action of drugs. We created and screened a library of barcoded pathway-activating mutant complementary DNAs to identify those that enhanced the survival of cancer cells in the presence of 13 clinically relevant, targeted therapies. We found that activation of the RAS-MAPK (mitogen-activated protein kinase), Notch1, PI3K (phosphoinositide 3-kinase)–mTOR (mechanistic target of rapamycin), and ER (estrogen receptor) signaling pathways often conferred resistance to this selection of drugs. Activation of the Notch1 pathway promoted acquired resistance to tamoxifen (an ER-targeted therapy) in serially passaged breast cancer xenografts in mice, and treating mice with a γ-secretase inhibitor to inhibit Notch signaling restored tamoxifen sensitivity. Markers of Notch1 activity in tumor tissue correlated with resistance to tamoxifen in breast cancer patients. Similarly, activation of Notch1 signaling promoted acquired resistance to MAPK inhibitors in BRAFV600E melanoma cells in culture, and the abundance of Notch1 pathway markers was increased in tumors from a subset of melanoma patients. Thus, Notch1 signaling may be a therapeutic target in some drug-resistant breast cancers and melanomas. Additionally, multiple resistance pathways were activated in melanoma cell lines with intrinsic resistance to MAPK inhibitors, and simultaneous inhibition of these pathways synergistically induced drug sensitivity. These data illustrate the potential for systematic identification of the signaling pathways controlling drug resistance that could inform clinical strategies and drug development for multiple types of cancer. This approach may also be used to advance clinical options in other disease contexts.


Genome Research | 2011

Genome-scale RNAi on living-cell microarrays identifies novel regulators of Drosophila melanogaster TORC1–S6K pathway signaling

Robert A. Lindquist; Kathleen Ottina; Douglas B. Wheeler; Peggy P. Hsu; Carson C. Thoreen; David A. Guertin; Siraj M. Ali; Shomit Sengupta; Yoav D. Shaul; Michael R. Lamprecht; Katherine L. Madden; Adam Papallo; Thouis R. Jones; David M. Sabatini; Anne E. Carpenter

The evolutionarily conserved target of rapamycin complex 1 (TORC1) controls cell growth in response to nutrient availability and growth factors. TORC1 signaling is hyperactive in cancer, and regulators of TORC1 signaling may represent therapeutic targets for human diseases. To identify novel regulators of TORC1 signaling, we performed a genome-scale RNA interference screen on microarrays of Drosophila melanogaster cells expressing human RPS6, a TORC1 effector whose phosphorylated form we detected by immunofluorescence. Our screen revealed that the TORC1-S6K-RPS6 signaling axis is regulated by many subcellular components, including the Class I vesicle coat (COPI), the spliceosome, the proteasome, the nuclear pore, and the translation initiation machinery. Using additional RNAi reagents, we confirmed 70 novel genes as significant on-target regulators of RPS6 phosphorylation, and we characterized them with extensive secondary assays probing various arms of the TORC1 pathways, identifying functional relationships among those genes. We conclude that cell-based microarrays are a useful platform for genome-scale and secondary screening in Drosophila, revealing regulators that may represent drug targets for cancers and other diseases of deregulated TORC1 signaling.


PMC | 2011

Functional genomics reveals serine synthesis is essential in PHGDH-amplified breast cancer

Richard Possemato; Kevin Marks; Yoav D. Shaul; Michael E. Pacold; Dohoon Kim; Kivanc Birsoy; Shalini Sethumadhavan; Hin-Koon Woo; Hyun Gyung Jang; Abhishek K. Jha; Walter W. Chen; Francesca G. Barrett; Nicolas Stransky; Zhi-Yang Tsun; Glenn S. Cowley; Jordi Barretina; Nada Y. Kalaany; Peggy P. Hsu; Kathleen Ottina; Albert M. Chan; Bingbing B. Yuan; Levi A. Garraway; David E. Root; Mari Mino-Kenudson; Elena F. Brachtel; Edward M. Driggers; David M. Sabatini


PMC | 2014

Systematic identification of signaling pathways with potential to confer anticancer drug resistance

Colin A. Martz; Kathleen Ottina; Katherine R. Singleton; Jeff S. Jasper; Suzanne E. Wardell; Ashley Peraza-Penton; Grace R. Anderson; Peter S. Winter; Holly M. Alley; Lawrence N. Kwong; Zachary A. Cooper; Michael T. Tetzlaff; Pei Ling Chen; Jeffrey C. Rathmell; Keith T. Flaherty; Jennifer A. Wargo; Donald P. McDonnell; Kris C. Wood; Tim Wang; David M. Sabatini


The FASEB Journal | 2013

A tumor suppressor complex with GAP activity for the Rag GTPases that signal amino acid sufficiency to mTORC1

Liron Bar-Peled; Lynne Chantranupong; Andrew D. Cherniack; Walter W. Chen; Kathleen Ottina; Brian C. Grabiner; Eric D. Spear; Scott L. Carter; Matthew Meyerson; David M. Sabatini


PMC | 2013

A Tumor Suppressor Complex with GAP Activity for the Rag GTPases That Signal Amino Acid Sufficiency to mTORC1

Liron Bar-Peled; Lynne Chantranupong; Andrew D. Cherniack; Walter W. Chen; Kathleen Ottina; Brian C. Grabiner; Eric D. Spear; Scott L. Carter; Matthew Meyerson; David M. Sabatini


PubMed Central | 2011

The mTOR-Regulated Phosphoproteome Reveals a Mechanism of mTORC1-Mediated Inhibition of Growth Factor Signaling

Jonathan Rameseder; Yiyun Zhang; Kathleen Ottina; Daniel Cham-Chin Lim; Yongmun Choi; Nathanael S. Gray; Michael B. Yaffe; Jarrod A. Marto; Peggy P. Hsu; Seong A. Kang; Timothy R. Peterson; David M. Sabatini

Collaboration


Dive into the Kathleen Ottina's collaboration.

Top Co-Authors

Avatar

David M. Sabatini

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Peggy P. Hsu

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Walter W. Chen

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Michael B. Yaffe

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Seong A. Kang

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Yoav D. Shaul

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Albert M. Chan

Massachusetts Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge