Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kathleen Trautwein is active.

Publication


Featured researches published by Kathleen Trautwein.


Applied and Environmental Microbiology | 2008

Solvent Stress Response of the Denitrifying Bacterium “Aromatoleum aromaticum” Strain EbN1

Kathleen Trautwein; Simon Kühner; Lars Wöhlbrand; Thomas Halder; Kenny Kuchta; Alexander Steinbüchel; Ralf Rabus

ABSTRACT The denitrifying betaproteobacterium “Aromatoleum aromaticum” strain EbN1 degrades several aromatic compounds, including ethylbenzene, toluene, p-cresol, and phenol, under anoxic conditions. The hydrophobicity of these aromatic solvents determines their toxic properties. Here, we investigated the response of strain EbN1 to aromatic substrates at semi-inhibitory (about 50% growth inhibition) concentrations under two different conditions: first, during anaerobic growth with ethylbenzene (0.32 mM) or toluene (0.74 mM); and second, when anaerobic succinate-utilizing cultures were shocked with ethylbenzene (0.5 mM), toluene (1.2 mM), p-cresol (3.0 mM), and phenol (6.5 mM) as single stressors or as a mixture (total solvent concentration, 2.7 mM). Under all tested conditions impaired growth was paralleled by decelerated nitrate-nitrite consumption. Additionally, alkylbenzene-utilizing cultures accumulated poly(3-hydroxybutyrate) (PHB) up to 10% of the cell dry weight. These physiological responses were also reflected on the proteomic level (as determined by two-dimensional difference gel electrophoresis), e.g., up-regulation of PHB granule-associated phasins, cytochrome cd1 nitrite reductase of denitrification, and several proteins involved in oxidative (e.g., SodB) and general (e.g., ClpB) stress responses.


Proteomics | 2013

Proteomic tools for environmental microbiology—A roadmap from sample preparation to protein identification and quantification

Lars Wöhlbrand; Kathleen Trautwein; Ralf Rabus

The steadily increasing amount of (meta‐)genomic sequence information of diverse organisms and habitats has a strong impact on research in microbial physiology and ecology. In‐depth functional understanding of metabolic processes and overall physiological adaptation to environmental changes, however, requires application of proteomics, as the context specific proteome constitutes the true functional output of a cell. Considering the enormous structural and functional diversity of proteins, only rational combinations of various analytical approaches allow a holistic view on the overall state of the cell. Within the past decade, proteomic methods became increasingly accessible to microbiologists mainly due to the robustness of analytical methods (e.g. 2DE), and affordability of mass spectrometers and their relative ease of use. This review provides an overview on the complex portfolio of state‐of‐the‐art proteomics and highlights the basic principles of key methods, ranging from sample preparation of laboratory or environmental samples, via protein/peptide separation (gel‐based or gel‐free) and different types of mass spectrometric protein/peptide analyses, to protein identification and abundance determination.


Proteomics | 2013

Adaptation of Phaeobacter inhibens DSM 17395 to growth with complex nutrients

Hajo Zech; Michael Hensler; Sebastian Koßmehl; Katharina Drüppel; Lars Wöhlbrand; Kathleen Trautwein; Reiner Hulsch; Uwe Maschmann; Thomas Colby; Jürgen Schmidt; Richard Reinhardt; Kerstin Schmidt-Hohagen; Dietmar Schomburg; Ralf Rabus

Phaeobacter inhibens DSM 17395, a member of the Roseobacter clade, was studied for its adaptive strategies to complex and excess nutrient supply, here mimicked by cultivation with Marine Broth (MB). During growth in process‐controlled fermenters, P. inhibens DSM 17395 grew faster (3.6‐fold higher μmax) and reached higher optical densities (2.2‐fold) with MB medium, as compared to the reference condition of glucose‐containing mineral medium. Apparently, in the presence of MB medium, metabolism was tuned to maximize growth rate at the expense of efficiency. Comprehensive proteomic analysis of cells harvested at ½ ODmax identified 1783 (2D DIGE, membrane and extracellular protein‐enriched fractions, shotgun) different proteins (50.5% coverage), 315 (based on 2D DIGE) of which displayed differential abundance profiles. Moreover, 145 different metabolites (intra‐ and extracellular combined) were identified, almost all of which (140) showed abundance changes. During growth with MB medium, P. inhibens DSM 17395 specifically formed the various proteins required for utilization of phospholipids and several amino acids, as well as for gluconeogenesis. Metabolic tuning on amino acid utilization is also reflected by massive discharge of urea to dispose the cell of excess ammonia. Apparently, P. inhibens DSM 17395 modulated its metabolism to simultaneously utilize diverse substrates from the complex nutrient supply.


Applied and Environmental Microbiology | 2014

Anaerobic activation of p-cymene in denitrifying betaproteobacteria: methyl group hydroxylation versus addition to fumarate.

Annemieke Strijkstra; Kathleen Trautwein; René Jarling; Lars Wöhlbrand; Marvin Dörries; Richard Reinhardt; Marta Drozdowska; Bernard T. Golding; Heinz Wilkes; Ralf Rabus

ABSTRACT The betaproteobacteria “Aromatoleum aromaticum” pCyN1 and “Thauera” sp. strain pCyN2 anaerobically degrade the plant-derived aromatic hydrocarbon p-cymene (4-isopropyltoluene) under nitrate-reducing conditions. Metabolite analysis of p-cymene-adapted “A. aromaticum” pCyN1 cells demonstrated the specific formation of 4-isopropylbenzyl alcohol and 4-isopropylbenzaldehyde, whereas with “Thauera” sp. pCyN2, exclusively 4-isopropylbenzylsuccinate and tentatively identified (4-isopropylphenyl)itaconate were observed. 4-Isopropylbenzoate in contrast was detected with both strains. Proteogenomic investigation of p-cymene- versus succinate-adapted cells of the two strains revealed distinct protein profiles agreeing with the different metabolites formed from p-cymene. “A. aromaticum” pCyN1 specifically produced (i) a putative p-cymene dehydrogenase (CmdABC) expected to hydroxylate the benzylic methyl group of p-cymene, (ii) two dehydrogenases putatively oxidizing 4-isopropylbenzyl alcohol (Iod) and 4-isopropylbenzaldehyde (Iad), and (iii) the putative 4-isopropylbenzoate-coenzyme A (CoA) ligase (Ibl). The p-cymene-specific protein profile of “Thauera” sp. pCyN2, on the other hand, encompassed proteins homologous to subunits of toluene-activating benzylsuccinate synthase (termed [4-isopropylbenzyl]succinate synthase IbsABCDEF; identified subunits, IbsAE) and protein homologs of the benzylsuccinate β-oxidation (Bbs) pathway (termed BisABCDEFGH; all identified except for BisEF). This study reveals that two related denitrifying bacteria employ fundamentally different peripheral degradation routes for one and the same substrate, p-cymene, with the two pathways apparently converging at the level of 4-isopropylbenzoyl-CoA.


Applied Microbiology and Biotechnology | 2014

Towards habitat-oriented systems biology of “Aromatoleum aromaticum” EbN1

Ralf Rabus; Kathleen Trautwein; Lars Wöhlbrand

The denitrifying betaproteobacterium “Aromatoleum aromaticum” EbN1 is a well-studied model organism for anaerobic degradation of aromatic compounds. Following publication of its genome in 2005, comprehensive physiological–proteomic studies were conducted to deduce functional understanding from the genomic blueprint. A catabolic network (85 predicted, 65 identified proteins) for anaerobic degradation of 24 aromatic growth substrates (including 11 newly recognized) was established. Newly elucidated pathways include those for 4-ethylphenol and plant-derived 3-phenylpropanoids, involving functional assignment of several paralogous genes. The substrate-specific regulation of individual peripheral degradation pathways is probably initiated by highly specific chemical sensing via dedicated sensory/regulatory proteins, e.g. three different σ54-dependent one-component sensory/regulatory proteins are predicted to discriminate between three phenolic substrates (phenol, p-cresol and 4-ethylphenol) and two different two-component systems are assumed to differentiate between two alkylbenzenes (toluene, ethylbenzene). Investigations under in situ relevant growth conditions revealed (a) preferred utilization of benzoate from a mixture with succinate results from repressed synthesis of a C4-dicarboxylate TRAP transporter; (b) response to alkylbenzene-induced solvent stress comprises metabolic re-routing of acetyl-CoA and reducing equivalents to poly(3-hydroxybutyrate) synthesis, alteration of cellular membrane composition and formation of putative solvent efflux systems; and (c) multifaceted adaptation to slow growth includes adjustment of energy demand for maintenance and preparedness for future nutritional opportunities, i.e. provision of uptake systems and catabolic enzymes for multiple aromatic substrates despite their absence. This broad knowledge base taken together with the recent development of a genetic system will facilitate future functional, biotechnological (stereospecific dehydrogenases) and habitat re-enacting (“eco-”systems biology) studies with “A. aromaticum” EbN1.


Environmental Microbiology | 2014

Pathways and substrate-specific regulation of amino acid degradation in Phaeobacter inhibens DSM 17395 (archetype of the marine Roseobacter clade)

Katharina Drüppel; Michael Hensler; Kathleen Trautwein; Sebastian Koßmehl; Lars Wöhlbrand; Kerstin Schmidt-Hohagen; Marcus Ulbrich; Nils Bergen; Jan P. Meier-Kolthoff; Markus Göker; Hans-Peter Klenk; Dietmar Schomburg; Ralf Rabus

Combining omics and enzymatic approaches, catabolic routes of nine selected amino acids (tryptophan, phenylalanine, methionine, leucine, isoleucine, valine, histidine, lysine and threonine) were elucidated in substrate-adapted cells of Phaeobacter inhibens DSM 17395 (displaying conspicuous morphotypes). The catabolic network [excluding tricarboxylic acid (TCA) cycle] was reconstructed from 71 genes (scattered across the chromosome; one-third newly assigned), with 69 encoded proteins and 20 specific metabolites identified, and activities of 10 different enzymes determined. For example, Ph. inhibens DSM 17395 does not degrade lysine via the widespread saccharopine pathway but might rather employ two parallel pathways via 5-aminopentanoate or 2-aminoadipate. Tryptophan degradation proceeds via kynurenine and 2-aminobenzoate; the latter is metabolized as known from Azoarcus evansii. Histidine degradation is analogous to the Pseudomonas-type Hut pathway via N-formyl-l-glutamate. For threonine, only one of the three genome-predicted degradation pathways (employing threonine 3-dehydrogenase) is used. Proteins of the individual peripheral degradation sequences in Ph. inhibens DSM 17395 were apparently substrate-specifically formed contrasting the non-modulated TCA cycle enzymes. Comparison of genes for the reconstructed amino acid degradation network in Ph. inhibens DSM 17395 across 27 other complete genomes of Roseobacter clade members revealed most of them to be widespread among roseobacters.


Proteomics | 2013

Dynamics of amino acid utilization in Phaeobacter inhibens DSM 17395

Hajo Zech; Michael Hensler; Sebastian Koßmehl; Katharina Drüppel; Lars Wöhlbrand; Kathleen Trautwein; Thomas Colby; Jürgen Schmidt; Richard Reinhardt; Kerstin Schmidt-Hohagen; Dietmar Schomburg; Ralf Rabus

Time‐resolved utilization of multiple amino acids by Phaeobacter inhibens DSM 17395 was studied during growth with casamino acids. The 15 detected amino acids could be grouped according to depletion rate into four different categories, i.e. from rapid (category I) to nondepletion (category IV). Upon entry into stationary growth phase, amino acids of category I (e.g. glutamate) were (almost) completely depleted, while those of categories II (e.g. leucine) and III (e.g. serine) were further consumed at varying rates and to different extents. Thus, cultures entered stationary growth phase despite the ample presence of organic nutrients, i.e. under nonlimiting conditions. Integrated proteomic and metabolomic analysis identified 1747 proteins and 94 intracellular metabolites. Of these, 180 proteins and 86 metabolites displayed altered abundance levels during growth. Most strikingly, abundance and activity profiles of alanine dehydrogenase concomitantly increased with the onset of enhanced alanine utilization during transition into stationary growth phase. Most enzymes of amino acid and central metabolism, however, displayed unaltered abundances across exponential and stationary growth phases. In contrast, metabolites of the Entner–Doudoroff pathway and gluconeogenesis as well as cellular fatty acids increased markedly in abundance in early stationary growth phase.


Journal of Molecular Microbiology and Biotechnology | 2017

Photometric Determination of Ammonium and Phosphate in Seawater Medium Using a Microplate Reader

Hanna S. Ruppersberg; Maren R. Goebel; Svea I. Kleinert; Daniel Wünsch; Kathleen Trautwein; Ralf Rabus

To more efficiently process the large sample numbers for quantitative determination of ammonium (NH<sub>4</sub><sup>+</sup>) and phosphate (orthophosphate, PO<sub>4</sub><sup>3-</sup>) generated during comprehensive growth experiments with the marine Roseobacter group member Phaeobacter inhibens DSM 17395, specific colorimetric assays employing a microplate reader (MPR) were established. The NH<sub>4</sub><sup>+</sup> assay is based on the reaction of NH<sub>4</sub><sup>+</sup> with hypochlorite and salicylate, yielding a limit of detection of 14 µ<smlcap>M</smlcap>, a limit of quantitation of 36 µ<smlcap>M,</smlcap> and a linear range for quantitative determination up to 200 µ<smlcap>M</smlcap>. The PO<sub>4</sub><sup>3-</sup>assay is based on the complex formation of PO<sub>4</sub><sup>3-</sup> with ammonium molybdate in the presence of ascorbate and zinc acetate, yielding a limit of detection of 13 µ<smlcap>M</smlcap>, a limit of quantitation of 50 µ<smlcap>M,</smlcap> and a linear range for quantitative determination up to 1 m<smlcap>M</smlcap>. Both MPR-based assays allowed for fast (significantly lower than 1 h) analysis of 21 samples plus standards for calibration (all measured in triplicates) and showed only low variation across a large collection of biological samples.


FEMS Microbiology Ecology | 2017

Non-Redfield, nutrient synergy and flexible internal elemental stoichiometry in a marine bacterium

Kathleen Trautwein; Christoph Feenders; Reiner Hulsch; Hanna S. Ruppersberg; Annemieke Strijkstra; Mirjam Kant; Jannes Vagts; Daniel Wünsch; Bernhard Michalke; Michael Maczka; Stefan Schulz; Helmut Hillebrand; Bernd Blasius; Ralf Rabus

Abstract The stoichiometric constraints of algal growth are well understood, whereas there is less knowledge for heterotrophic bacterioplankton. Growth of the marine bacterium Phaeobacter inhibens DSM 17395, belonging to the globally distributed Roseobacter group, was studied across a wide concentration range of NH4+ and PO43−. The unique dataset covers 415 different concentration pairs, corresponding to 207 different molar N:P ratios (from 10−2 to 105). Maximal growth (by growth rate and biomass yield) was observed within a restricted concentration range at N:P ratios (∼50−120) markedly above Redfield. Experimentally determined growth parameters deviated to a large part from model predictions based on Liebigs law of the minimum, thus implicating synergistic co-limitation due to biochemical dependence of resources. Internal elemental ratios of P. inhibens varied with external nutrient supply within physiological constraints, thus adding to the growing evidence that aquatic bacteria can be flexible in their internal elemental composition. Taken together, the findings reported here revealed that P. inhibens is well adapted to fluctuating availability of inorganic N and P, expected to occur in its natural habitat (e.g. colonized algae, coastal areas). Moreover, this study suggests that elemental variability in bacterioplankton needs to be considered in the ecological stoichiometry of the oceans.


FEMS Microbiology Ecology | 2018

The marine bacterium Phaeobacter inhibens secures external ammonium by rapid buildup of intracellular nitrogen stocks

Kathleen Trautwein; Michael Hensler; Katharina Wiegmann; Ekaterina Skorubskaya; Lars Wöhlbrand; Daniel Wünsch; Christina Hinrichs; Christoph Feenders; Constanze Müller; Kristina Schell; Hanna S. Ruppersberg; Jannes Vagts; Sebastian Koßmehl; Alexander Steinbüchel; Philippe Schmidt-Kopplin; Heinz Wilkes; Helmut Hillebrand; Bernd Blasius; Dietmar Schomburg; Ralf Rabus

ABSTRACT Reduced nitrogen species are key nutrients for biological productivity in the oceans. Ammonium is often present in low and growth-limiting concentrations, albeit peaks occur during collapse of algal blooms or via input from deep sea upwelling and riverine inflow. Autotrophic phytoplankton exploit ammonium peaks by storing nitrogen intracellularly. In contrast, the strategy of heterotrophic bacterioplankton to acquire ammonium is less well understood. This study revealed the marine bacterium Phaeobacter inhibens DSM 17395, a Roseobacter group member, to have already depleted the external ammonium when only ∼⅓ of the ultimately attained biomass is formed. This was paralleled by a three-fold increase in cellular nitrogen levels and rapid buildup of various nitrogen-containing intracellular metabolites (and enzymes for their biosynthesis) and biopolymers (DNA, RNA and proteins). Moreover, nitrogen-rich cells secreted potential RTX proteins and the antibiotic tropodithietic acid, perhaps to competitively secure pulses of external ammonium and to protect themselves from predation. This complex response may ensure growing cells and their descendants exclusive provision with internal nitrogen stocks. This nutritional strategy appears prevalent also in other roseobacters from distant geographical provenances and could provide a new perspective on the distribution of reduced nitrogen in marine environments, i.e. temporary accumulation in bacterioplankton cells.

Collaboration


Dive into the Kathleen Trautwein's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dietmar Schomburg

Braunschweig University of Technology

View shared research outputs
Top Co-Authors

Avatar

Michael Hensler

Braunschweig University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kerstin Schmidt-Hohagen

Braunschweig University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Heinz Wilkes

Forschungszentrum Jülich

View shared research outputs
Researchain Logo
Decentralizing Knowledge