Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kathleen Vancleef is active.

Publication


Featured researches published by Kathleen Vancleef.


Journal of Vision | 2016

Avoiding monocular artifacts in clinical stereotests presented on column-interleaved digital stereoscopic displays

Ignacio Serrano-Pedraza; Kathleen Vancleef; Jenny C. A. Read

New forms of stereoscopic 3-D technology offer vision scientists new opportunities for research, but also come with distinct problems. Here we consider autostereo displays where the two eyes images are spatially interleaved in alternating columns of pixels and no glasses or special optics are required. Column-interleaved displays produce an excellent stereoscopic effect, but subtle changes in the angle of view can increase cross talk or even interchange the left and right eyes images. This creates several challenges to the presentation of cyclopean stereograms (containing structure which is only detectable by binocular vision). We discuss the potential artifacts, including one that is unique to column-interleaved displays, whereby scene elements such as dots in a random-dot stereogram appear wider or narrower depending on the sign of their disparity. We derive an algorithm for creating stimuli which are free from this artifact. We show that this and other artifacts can be avoided by (a) using a task which is robust to disparity-sign inversion—for example, a disparity-detection rather than discrimination task—(b) using our proposed algorithm to ensure that parallax is applied symmetrically on the column-interleaved display, and (c) using a dynamic stimulus to avoid monocular artifacts from motion parallax. In order to test our recommendations, we performed two experiments using a stereoacuity task implemented with a parallax-barrier tablet. Our results confirm that these recommendations eliminate the artifacts. We believe that these recommendations will be useful to vision scientists interested in running stereo psychophysics experiments using parallax-barrier and other column-interleaved digital displays.


Investigative Ophthalmology & Visual Science | 2016

The Stereoscopic Anisotropy Develops During Childhood

Ignacio Serrano-Pedraza; William Herbert; Laura Villa-Laso; Michael Widdall; Kathleen Vancleef; Jenny C. A. Read

Purpose Human vision has a puzzling stereoscopic anisotropy: horizontal depth corrugations are easier to detect than vertical depth corrugations. To date, little is known about the function or the underlying mechanism responsible for this anisotropy. Here, we aim to find out whether this anisotropy is independent of age. To answer this, we compare detection thresholds for horizontal and vertical depth corrugations as a function of age. Methods The depth corrugations were defined solely by the horizontal disparity of random dot patterns. The disparities depicted a horizontal or vertical sinusoidal depth corrugation of spatial frequency 0.1 cyc/deg. Detection thresholds were obtained using Bayesian adaptive staircases from a total of 159 subjects aged from 3 to 73 years. For each participant we computed the anisotropy index, defined as the log10-ratio of the detection threshold for vertical corrugations divided by that for horizontal. Results Anisotropy index was highly variable between individuals but was positive in 87% of the participants. There was a significant correlation between anisotropy index and log-age (r = 0.21, P = 0.008) mainly driven by a significant difference between children and adults. In 67 children aged 3 to 13 years, the mean anisotropy index was 0.34 ± 0.38 (mean ± SD, meaning that vertical thresholds were on average 2.2 times the horizontal ones), compared with 0.59 ± 0.55 in 84 adults aged 18 to 73 years (vertical 3.9 times horizontal). This was mainly driven by a decline in the sensitivity to vertical corrugations. Children had poorer stereoacuity than adults, but had similar sensitivity to adults for horizontal corrugations and were actually more sensitive than adults to vertical corrugations. Conclusions The fact that adults show stronger stereo anisotropy than children raises the possibility that visual experience plays a critical role in developing and strengthening the stereo anisotropy.


Vision Research | 2016

Response priming evidence for feedforward processing of snake contours but not of ladder contours and textures

Filipp Schmidt; Kathleen Vancleef

In contour integration, increased difficulty in detection and shape discrimination of a chain of parallel elements (a ladder contour) compared to collinear elements (a snake contour) suggests more extensive processing of ladders than of snakes. In addition, conceptual similarities between ladders and textures - which also involve grouping of parallel elements - raises the question whether ladder and texture processing requires feedback from higher visual areas while snakes are processed in a fast feedforward sweep. We tested this in a response priming paradigm, where participants responded as quickly and accurately as possible to the orientation of a diagonal contour in a Gabor array (target). The diagonal was defined either by a snake, ladder, texture, or a continuous line. The target was preceded with varying stimulus onset asynchrony (SOA) by a prime that was either a snake, ladder, or texture, and was consistent or inconsistent to the response demands of the target. Resulting priming effects clearly distinguished between processing of snakes, ladders, and textures. Effects generally increased with SOA but were stronger for snakes and textures compared to ladders. Importantly, only priming effects for snakes were fully present already in the fastest response times, in accordance with a simple feedforward processing model. We conclude that snakes, ladders, and textures do not share similar processing characteristics, with snakes exhibiting a pronounced processing advantage.


Ophthalmic and Physiological Optics | 2017

Overestimation of stereo thresholds by the TNO stereotest is not due to global stereopsis

Kathleen Vancleef; Jenny C. A. Read; William Herbert; Nicola Goodship; Maeve Woodhouse; Ignacio Serrano-Pedraza

It has been repeatedly shown that the TNO stereotest overestimates stereo threshold compared to other clinical stereotests. In the current study, we test whether this overestimation can be attributed to a distinction between ‘global’ (or ‘cyclopean’) and ‘local’ (feature or contour‐based) stereopsis.


38th European Conference on Visual Perception (ECVP) | 2015

ASTEROID: Accurate STEReoacuity measurement in the eye clinic

Jenny C. A. Read; Kathleen Vancleef; Ignacio Serrano-Pedraza; Graham Morgan; Craig Sharp; Michael P. Clarke

Adaptation to videos of human locomotion (videos recorded from the London Marathon) affects observers’ subsequent perception of human locomotion speed: normal speed test stimuli are perceived as being played in slow-motion after adaptation to fast-forward stimuli and conversely, are perceived as being played in fast-forward after adaptation to slow-motion stimuli. In this study we investigated whether the presence of recognisable human motion in the adapting stimulus is necessary for the effect. The adapting stimuli were spatially scrambled: horizontal pixel rows were randomly shuffled. The same shuffled order was used for all frames preserving horizontal motion information, but ensuring no human form could be recognised. Results showed that the after-effect persisted despite spatially scrambling the adapting stimuli; human motion is not a necessary requirement for the locomotion after-effect. The after-effect seems to be driven by adaptation in relatively low-level visual channels rather than the high-level processes that encode human motion.Perception is usually non-retinotopic. For example, a reflector on the wheel of a bicycle is perceived to rotate on a circular orbit, while its retinotopic motion is cycloidal. To investigate non-retinotopic motion perception, we used the Ternus-Pikler display. Two disks are repeatedly flashed on a computer screen. A dot moves linearly up-down in the left disk and left-right in the right disk (retinotopic percept). If a third disk is added alternatingly to the left and right, the three disks form a group moving predictably back and forth horizontally. The dot in the central disk now appears to move on a circular orbit (non-retinotopic percept), because the brain subtracts the horizontal group motion from the up-down and left-right motion. Here, we show that predictability is not necessary to compute non-retinotopic motion. In experiment 1, the three disks moved randomly in any direction. In experiment 2, we additionally varied the shape and contrast polarity of the stimuli from frame to frame. In both cases, strong non-retinotopic rotation was perceived. Hence, the visual system can flexibly solve the non-retinotopic motion correspondence problem, even when the retinotopic reference motion is unpredictable and no efference copy-like signals can be used.In Object Substitution Masking (OSM) a mask surrounding, simultaneously onsetting with, and trailing a target leads to a reduction in target perceptibility (Di Lollo et al., 2000). It has been questioned whether this process is due to target substitution or the addition of noise to the percept (Podor, 2012). Two experiments examined this issue using an adjustment task in which a test Landolt C is presented and participants rotate it to match the target Landolt C shown during the trial (typical OSM paradigms use 2-4 alternative forced choice); the dependent measure was the angle of error. In Experiment 1 the effect of a trailing OSM mask (80ms-320ms) is compared against that of adding stimulus noise of varying densities (25%-75%) to the target location. Both manipulations (OSM, stimulus noise) produced a similar change in the distribution of errors compared against a baseline (0ms trailing mask, 0%-noise). The pattern is consistent with both mask manipulations reducing the fidelity of the target percept. In Experiment 2 the OSM and stimulus noise manipulations were varied factorially. Here the two manipulations had combinatorial effects on the error distribution. Implications are discussed regarding the mechanisms of OSM and the consequences of OSM for target perceptionDistributed representations (DR) of cortical channels are pervasive in models of spatio-temporal vision. A central idea that underpins current innovations of DR stems from the extension of 1-D phase into 2-D images. Neurophysiological evidence, however, provides tenuous support for a quadrature representation in the visual cortex, since even phase visual units are associated with broader orientation tuning than odd phase visual units (J.Neurophys.,88,455–463, 2002). We demonstrate that the application of the steering theorems to a 2-D definition of phase afforded by the Riesz Transform (IEEE Trans. Sig. Proc., 49, 3136–3144), to include a Scale Transform, allows one to smoothly interpolate across 2-D phase and pass from circularly symmetric to orientation tuned visual units, and from more narrowly tuned odd symmetric units to even ones. Steering across 2-D phase and scale can be orthogonalized via a linearizing transformation. Using the tiltafter effect as an example, we argue that effects of visual adaptation can be better explained by via an orthogonal rather than channel specific representation of visual units. This is because of the ability to explicitly account for isotropic and cross-orientation adaptation effect from the orthogonal representation from which both direct and indirect tilt after-effects can be explained.claims surround the effects of colour on performance. Elliot, Maier, Moller, Friedman and Meinhardt (2007) proposed that in an achievement context (e.g. maths test) the perception of red impedes performance by inducing avoidance motivation. However, replications of the effect are scant, especially in the UK and some suffer from a lack of stimulus colour control. We report five experiments that attempt to replicate the red-effect in an achievement context across a range of settings: online; in school classrooms; and in the laboratory. In each experiment, stimuli were carefully specified and calibrated to ensure that they varied in hue but not luminance or saturation. Only one experiment replicated the red effect – participants who were primed with a red stimulus (relative to white) for 5 s scored worse on a subsequent verbal task. However, replication and extension of this experiment failed to reproduce the effect. Explanations for the findings are discussed including: the effect is not present in a UK population; the effect requires very specific methodology; the effect does not generalise to applied settings; and/or the original body of work overestimates the prevalence of these effects. PhD research funded by studentship provided by the University of Surrey Psychology Faculty.This poster was presented at 38th European Conference on Visual Perception (ECVP) 2015 Liverpool, abstract published in Perception on 21 August 2015Dynamic stimuli capture attention, even if not in the focus of endogenous attention. Such a nstimulus is apparent motion, given that it benefits perception of targets in the motion path. nThese benefits have been attributed to motion-induced ‘entrainment’ of attention to expected nlocations (spatial extrapolation) and/or expected time-points (temporal entrainment). Here, we nstudied the automatic nature of spatial extrapolation versus temporal entrainment with apparent nmotion stimuli, when motion was task-irrelevant. Participants performed an endogenously cued ntarget detection task, in which symbolic cues prompted attention shifts to lateralized target npositons (75% validity). Simultaneously, apparent motion cues flickered either rhythmically or narhythmically across the screen, such that targets appeared either in or out of motion ntrajectory. Although the motion cue can be considered a distractor (non-informative as to ntarget location), motion direction influenced target detection, which is in line with automatic nextrapolation of spatial positions during apparent motion. An effect that was independent and nadditive to the endogenous cueing benefit. Importantly, temporal cueing in the motion stream also ninfluenced target detection. However, this effect was independent of reflexive motion-cueing to nspatial positions. We conclude that spatial extrapolation and temporal entrainment of attention by napparent motion are governed by partially independent reflexive mechanisms.How do interpersonal behavioural dynamics predict individual and joint decisions? Recent interactionist views on social cognition suggest that the most under-studied and important aspect of social cognition may be interaction dynamics. However, it has hitherto proven extremely difficult to devise a controlled setup in which social cues, such as eye gaze, are nsubject to unconstrained interaction. To address these issues, we use a dual interactive eye-tracking paradigm. Participants are presented with the face of an anthropomorphic avatar, the eye movements of which are linked in real-time to another participant’s eye-gaze. This allows for control of interaction aspects that are not related to the experience of gaze contingency. Participants have to choose which one out of two spheres on either side of the avatar face is the largest. These spheres can have a medium, small, and no difference. Specifically in the latter condition, gaze dynamics guide choices. Using cross-recurrence quantification, we analyse the time course of the gaze interactions and look at how this predicts individual and joint decisions about sphere size, which participant will follow the other, and assess collaboration in a subsequent “stag hunt” game, a variation on the prisoner’s dilemma game.We report a new after-effect of visual motion in which the apparent speed of human locomotion is affected by prior exposure to speeded-up or slowed-down motion. In each trial participants were shown short video clips of running human figures (recorded from the London Marathon) and asked to report whether the speed of movement was ‘slower than natural’ or ‘faster than natural’, by pressing one of two response buttons. The clips were displayed at different playback speeds ranging from slow-motion (0.48x natural speed) to fast-forward (1.44x natural speed). Adaptation to stimuli played at normal speed resulted in the P50 of the psychometric function falling close to normal-speed playback. However after adaptation to 1.44x playback, normal-speed playback appeared too slow, so the P50 shifted significantly towards a higher playback speed; after adaptation to 0.48xplayback, normal-speed playback appeared too fast, so the P50 shifted significantly towards a lower playback speed. The shifts in apparent speed were obtained using both same- and opposite-direction adaptation-test stimulus pairs, indicating that the effect is a speed adaptation effect rather than a directional velocity after-effect. These findings are consistent with norm-based coding of the speed of movement.The relative importance of dynamic and static emotion signals from facial expressions was evaluated using a temporal two-interval forced-choice paradigm.xa0xa0Stimuli were black and white images of faces with a happy or fearful expression. A range of signal strengths (0-100%) of expressions were created by morphing neutral and expressive images. Dynamic stimuli were generated using a sequence of frames each containing an increasingly expressive image. One interval contained the comparison face (50%) and the other contained the test face (varied from 20% – 100%).xa0xa0Observers indicated the interval that contained the image that was more expressive.xa0 The percentage of times the test face was judged as more expressive increased as signal strength increased. n nPsychometric functions describing performance with dynamic fearful stimuli are shifted to the left of functions describing dynamic happy stimuli.xa0xa0This suggests that emotion signals conveyed by dynamic fearful faces are more salient than signals conveyed by dynamic happy faces.xa0 Dynamic stimuli with a fast rate of change at stimulus onset (fast) are shifted to the left of those with a slow rate of change (slow). This suggests that ‘fast’ dynamic stimuli are more salient than ‘slow’ dynamic stimuli. Static fearful and static happy emotion signals are equally salient.Young adults typically display a processing advantage for the left side of space (‘‘pseudoneglect’’) nbut older adults display either no strongly lateralised bias or a preference towards the right n(Benwell et al., 2014; Schmitz & Peigneux, 2011). We have previously reported an additive nrightward shift in the spatial attention vector with decreasing landmark task line length and nincreasing age (Benwell et al., 2014). However there is very little neuroimaging evidence to nshow how this change is represented at a neural level. We tested 20 young (18–25) and 20 nolder (60–80) adults on long vs short landmark lines whilst recording activity using EEG. The npeak ‘‘line length effect’’ (long vs short lines) was localised to the right parieto-occipital cortex n(PO4) 137 ms post-stimulus. Importantly, older adults showed additional involvement of left nfrontal regions (AF3: 386 ms & F7: 387 ms) for short lines only, which may represent the neural ncorrelate of this rightward shift. These behavioural results align with the HAROLD model of aging n(Cabeza, 2002) where brain activity becomes distributed across both hemispheres in older adults nto support successful performance.We studied the effect of age on visual perceptual decisions of bi-stable stimuli. We used two different stimuli: bi-stable rotating spheres and a binocular rivalry stimulus. At onset, both stimuli can evoke two different percepts: for the sphere clockwise or anti-clockwise rotation and for the binocular rivalry stimulus a percept that switches between the stimuli in the two eyes. The stimuli were presented intermittently for 1 second with a range of inter-stimulus intervals (0.1 – 2 seconds). Subjects ranged between 18 and 73 years old and were instructed to indicate which of the two percepts dominate at each onset of the bi-stable stimulus. Our results show that perceptual choices are more stable for older subjects for the binocular rivalry stimulus and not for the bi-stable rotating spheres. The results will be discussed in the context of current models for bi-stable visual perception.The visual system combines spatial signals from the two eyes to achieve single vision. But if binocular disparity is too large, this perceptual fusion gives way to diplopia. We studied and modelled the processes underlying fusion and the transition to diplopia. The likely basis for fusion is linear summation of inputs onto binocular cortical cells. Previous studies of perceived position, contrast matching and contrast discrimination imply the computation of a dynamicallyweighted sum, where the weights vary with relative contrast. For gratings, perceived contrast was almost constant across all disparities, and this can be modelled by allowing the ocular weights to increase with disparity (Zhou, Georgeson & Hess, 2014). However, when a single Gaussian-blurred edge was shown to each eye perceived blur was invariant with disparity (Georgeson & Wallis, ECVP 2012) – not consistent with linear summation (which predicts that perceived blur increases with disparity). This blur constancy is consistent with a multiplicative form of combination (the contrast-weighted geometric mean) but that is hard to reconcile with the evidence favouring linear combination. We describe a 2-stage spatial filtering model with linear binocular combination and suggest that nonlinear output transduction (eg. ‘half-squaring’) at each stage may account for the blur constancy.


PLOS ONE | 2018

Two choices good, four choices better: For measuring stereoacuity in children, a four-alternative forced-choice paradigm is more efficient than two

Kathleen Vancleef; Jenny C. A. Read; William Herbert; Nicola Goodship; Maeve Woodhouse; Ignacio Serrano-Pedraza

Purpose Measuring accurate thresholds in children can be challenging. A typical psychophysical experiment is usually too long to keep children engaged. However, a reduction in the number of trials decreases the precision of the threshold estimate. We evaluated the efficiency of forced-choice paradigms with 2 or 4 alternatives (2-AFC, 4-AFC) in a disparity detection experiment. 4-AFC paradigms are statistically more efficient, but also more cognitively demanding, which might offset their theoretical advantage in young children. Methods We ran simulations evaluating bias and precision of threshold estimates of 2-AFC and 4-AFC paradigms. In addition, we measured disparity thresholds in 43 children (aged 6 to 17 years) with a 4-AFC paradigm and in 49 children (aged 4 to 17 years) with a 2-AFC paradigm, both using an adaptive weighted one-up one-down staircase. Results Simulations indicated a similar bias and precision for a 2-AFC paradigm with double the number of trials as a 4-AFC paradigm. On average, estimated threshold of the simulated data was equal to the model threshold, indicating no bias. The precision was improved with an increasing number of trials. Likewise, our data showed a similar bias and precision for a 2-AFC paradigm with 60 trials as for a 4-AFC paradigm with 30 trials. Trials in the 4-AFC paradigm took slightly longer as participants scanned more alternatives. However, the 4-AFC task still ended up faster for a given precision. Conclusion Bias and precision were similar in a 4-AFC task compared to a 2-AFC task with double the number of trials. However, a 4-AFC paradigm was more time efficient and is therefore recommended.


international conference on digital health | 2017

Analysis of Soft Data for Mass Provision of Stereoacuity Testing Through a Serious Game for Health

Gary Ushaw; Craig Sharp; Jessica Hugill; Carla Black; Therese Casanova; Kathleen Vancleef; Jenny C. A. Read; Graham Morgan

Mass provision of healthcare through a digital medium can be greatly enhanced by the use of serious games. The accessibility and engagement provided by a serious game to the subject can significantly increase participation. The commercial games industry employs numerous techniques to analyse soft data collected from early users of an application to evolve the application itself and improve the experience of playing it. A game for mass stereoacuity testing of young children is used as a case study in this paper, to illustrate how soft feedback can be used to improve the effectiveness of a clinical trial. The key to the approach is identified as rapid incremental evolution of the application and trial protocol in a manner which increases the amount and usefulness of soft data collected, and reacts to issues identified in the soft data in a timely fashion. It is hoped that the approach can be adopted for a wide range of digital applications for mass health provision.


Archive | 2016

Comparing stereotests: the TNO test overestimates stereoacuity

Kathleen Vancleef; Jenny C. A. Read; Ignacio Serrano-Pedraza

Gender differences are well established in cognition and somato-sensation, but there are almost no studies on gender differences in visual perception. One reason is that sample size is often small because effect sizes are large. Small samples are not well suited to test for gender differences. Here, we tested 887 participants from 14 to 90 years old. We tested participants in visual and vernier acuity, visual backward masking and the Wisconsin Card Sorting Test (WCST). We found no gender differences in any of the four tests for younger participants (n = 358; 14–30 years old). Even in a subgroup of schizophrenia patients (n = 260), we did not find gender differences, but large performance deficits in patients compared to controls. For middle-aged participants (n = 170; 31–59 years old), men performed significantly better than women in all perceptual tests, even when we controlled for age. We also found better performance of men compared to women in vernier duration in older participants (n = 99; 60–90 years old) and trends in the same direction for the other tests. Hence, it may be that women’s performance deteriorates with age more strongly than men’s performance. We did not find any difference in WCST, indicating no gender differences for executive functions.Although visual integration is often thought to be retinotopic, visual features can be integrated across retinotopic locations. For example, when a Vernier is followed by a sequence of flanking lines on either side, a percept of two diverging motion streams is elicited. Even though the central Vernier is invisible due to metacontrast masking, its offset is visible in the following elements. If an offset is introduced to one of the flanking lines, the two offsets combine (Otto et al., 2006). Here, by varying the number of flanking lines and the position of the flank offset, we show that this integration lasts up to 450 ms. Furthermore, this process is mandatory, i.e, observers are not able to consciously access the individual lines and change their decision. These results suggest that the contents of consciousness can be modulated by an unconscious memory-process wherein information is integrated for up to 450 ms.The ability of people with Parkinson’s (PwP) to discriminate upright and inverted facial expressions nis evaluated using a temporal two-interval forced-choice paradigm. Stimuli are black and white images of neutral, happy, angry, disgusted, fearful, sad and surprised expressions. Inverted stimuli are the two expressions that participants are most and least sensitive to. A range of intensities of expressions (0–100%) are created by morphing between neutral and expressive images. The nneutral image (0%) is presented in one interval and the expressive image (varies –100%) in the other. Observers indicate the interval that contained the image that was most expressive. For all upright expressions and all participants, performance increases from chance to 100% correct as intensity of expression increases. Fitted functions describing performance of happy and disgust are nshifted to the left of others. This suggests that PwP are most sensitive to expressions of happiness and disgust. PwP and control participants show a small reduction in sensitivity for the expression they are most sensitive to when it is inverted (Face Inversion Effect). For PwP there is a considerable Face Inversion Effect for the expression they are least sensitive to. This suggests nthat configural face processing is disrupted in Parkinson’s disease.Unlike in cognition, audition and somatosensation, performance between various visual tasks does not correlate. Surprisingly, even tasks that appear similar, like visual acuity and line bisection task do not share much common variance. Similar results were found for visual illusions. For example, the Ebbinghaus and the Muller-Lyer illusions correlate very weakly. The high intra- and inter-observer variability in visual perception is possibly due to perceptual learning, i.e., individual experience shaping perception throughout one’s life time. Here, we studied the relationship between illusion strength and high-level factors such as personality traits (O-Life) and the vividness of mental imagery (VVIQ). In line with previous findings, we found only few correlations between the magnitudes of the visual illusions, despite having high test-retest reliability. More interestingly, we found a high, positive correlation between the magnitude of the Ponzo illusion and vividness of mental imagery. Moreover, the magnitude of the Ponzo illusion was negatively correlated with cognitive disorganization personality trait. These results were specific to the Ponzo-type illusions. Principal component analysis revealed one factor, with high weights mainly on the Ponzo-type illusions, cognitive disorganization and the vividness of mental imagery.Visual backward masking (VBM) is a very sensitive endophenotype of schizophrenia. Masking deficits are highly correlated with reduced EEG amplitudes. In VBM, a target stimulus is followed by a mask, which decreases performance on the target. Here, we investigated the neural correlates of VBM in relatives of schizophrenia patients. We had three conditions: target only and two VBM conditions, with long and short inter-stimulus intervals (ISI). Patients’ performance was impaired, while the relatives performed at the same level as the controls. Interestingly, EEG N1 amplitudes were higher in relatives compared to controls, while they were lower in patients relative to controls as previously reported. For relatives, N1 amplitudes were at the same level in all conditions. For controls and patients, N1 amplitudes increased with task difficult, e.g., amplitudes in the long ISI condition were lower than in short ISI condition. Our results suggest that relatives use a compensation mechanism tuning the brain to maximum performance in all conditions. Since relatives are already at the peak of their activations, increasing the task difficulty does not change brain processing.In crowding, the perception of an object deteriorates in the presence of nearby elements. Obviously, crowding is a ubiquitous phenomenon, since elements are rarely seen in isolation. Despite this ubiquity, there exists no consensus on how to model crowding. In previous experiments, it was shown that the global configuration of the entire stimulus needs to be taken into account. These findings rule out simple pooling models and favor models sensitive to global spatial aspects. In order to further investigate how to incorporate these aspects into models, we tested different types of texture segmentation models such as the Texture Tiling Model, a variation of the LAMINART neural model, a model based on Epitomes, a model based on filtering in the Fourier domain, and several classic neural network models. Across all models, simply capturing regularities in the stimulus does not suffice, as illustrated by a failure of the Fourier analysis model to explain our results. Importantly, we find that models with a grouping mechanism (such as the LAMINART model) work best. However, this grouping may be implemented in different ways, as we will show.Genetic variations of the alpha7 subunit of the nicotinergic acetylcholine receptor gene (CHRNA7) are linked to cognitive deficits in aging and schizophrenia. However, little is known about associations of the CHRNA7 gene with aged-related decline in visual perception. In the present study, we tested whether variations in the alpha7 subunit of the nicotinergic acetylcholine receptor gene (CHRNA7) interact with the perception of coherent motion in healthy aging. We assessed motion coherence for twenty-five older participants (60-73 years) and twenty-six younger participants (20–27 years) for a left/right motion direction discrimination task. A single nucleotide polymorphism (SNP) [rs2337980] of the CHRNA7 was genotyped. Overall, 25 participants were classified as T/C allele carriers (11 older), and 22 participants were classified as C/C (11 older). Only 3 participants were T/T and therefore, this group was excluded from further analysis. Overall, older adults had higher motion coherence thresholds than younger adults.We did not find any age-related associations of motion direction discrimination with the CHRNA7. However, regardless of age group, participants carrying the T/C genotype performed the task significantly better than C/C carriers. Our results therefore, indicate a strong relationship between the nicotinic system and motion perception.Reinforcement learning is a type of supervised learning, where reward is sparse and delayed. For example in chess, a series of moves is made until a sparse reward (win, loss) is issued, which makes it impossible to evaluate the value of a single move. Still, there are powerful algorithms, which can learn from delayed and sparse feedback. In order to investigate how visual reinforcement learning is determined by the structure of the RL-problem, we designed a new paradigm, in which we presented an image and asked human observers to choose an action (pushing one out of a number of buttons). The chosen action leads to the next image until observers achieve a goal image. Different learning situations are determined by the image-action matrix, which creates a so-called environment. We first tested whether humans can utilize information learned from a simple environment to solve more complex ones. Results showed no evidence supporting this hypothesis. We then tested our paradigm on several environments with different graph theoretical features, such as regular vs. irregular environments. We found that humans performed better in environments which contain less image-action pairs to the goal. We tested various RL-algorithms and found them to perform inferior to humans.The first psychotic episode is an important period for prevention of cognitive and social deterioration in schizophrenia. Cognitive deficits are of particular interest since they are evident even before a proper diagnosis can be made. Interestingly, there is a relation between cognitive deficits and social functioning. Here, we investigated the changes in cognitive and social functioning during one year and determined also the association of social functioning with cognitive impairments and psychopathological symptoms in first episode patients. 32 patients with a first psychotic episode and 32 healthy controls were investigated. Cognitive functions such as visual perception, executive functions, sustained attention, were tested with visual backward masking (VBM), the Wisconsin Card Sorting Test (WCST), and the Continuous Performance Test (CPT). Follow up tests were carried out after 6 and 12 months. Social functioning of the patients was evaluated by Health and Outcome Scale (HoNOS). Cognitive functions of patients were impaired compared to the healthy controls in all 3 tests. Performance in the cognitive tests did not change significantly during the year. Treatment compliance, however, improved social and symptom indicators.Even in the absence of neurodegenerative disease, aging strongly affects vision. Whereas optical deficits are well documented, much less is known perceptual deficits. In most perceptual studies, one paradigm is tested and it is usually found that older participants perform worse than younger participants. Implicitly, these results are taken as evidence that all visual functions of an individual decline determined by one factor, with some individuals aging more severly than others. However, this is not true. We tested 131 older participants (mean age 70 years old) and 108 younger participants (mean age 22 years old) in 14 perceptual tests (including motion perception, contrast and orientation sensitivity, biological motion perception) and in 3 cognitive tasks (WCST, verbal fluency and digit span). Young participants performed better than older participants in almost all of the tests. However, within the group of older participants, age did not predict performance, i.e., a participant could have good results in biological motion perception but poor results in orientation discrimination. It seems that there is not a single ‘‘aging’’ factor but many.39th European Conference on Visual Perception (ECVP) 2016 Barcelona LEGEND. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Monday August 29th Poster presentations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Monday August 29th Symposia presentations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 Monday August 29th Oral presentations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 Tuesday August 30th Poster presentations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 Tuesday August 30th Symposia presentations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 Tuesday August 30th Oral presentations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 Wednesday August 31th Poster presentations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190 Wednesday August 31th Symposia presentations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261 Wednesday August 31th Oral presentations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264 Thursday September 1st Poster presentations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279 Thursday September 1st Symposia presentations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351 Thursday September 1st Oral presentations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353 Author Index. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370 Perception 2016, Vol. 45(S2) 1–383 ! The Author(s) 2016 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav DOI: 10.1177/0301006616671273 pec.sagepub.comYoung adults typically display a processing advantage for the left side of space (‘‘pseudoneglect’’), nwhereas older adults display no strongly lateralised bias, or indeed a preference towards the right n(Benwell et al., 2014; Schmitz & Peigneux, 2011). For young adults, we have recently reported that n5 commonly-used spatial attention tasks (line bisection, landmark, greyscales, gratingscales and nlateralised visual detection) all provide stable intra-task measures of bias over time, however no nstrong inter-task correlations were found (Learmonth et al., 2015). At present there is no nsystematic evidence for intra- and inter-task consistency in older adults. To investigate this, we ntested 22 older adults (mean age ¼ 70.44) on these five tasks, on two different days. Preliminary nresults show that three of the five tasks (line bisection, landmark and grayscales) seem to provide nstable measures over testing sessions, indicating that they measure a consistent property of the nspatial attention network. However, as per our previous finding in young adults, there seem to be nno significant between-task correlations. Moreover, in contrast to the leftward biases reported in nyoung adults, this elderly age group showed no significant lateral biases on any of the tasks.Estimates if the visual speed of human movements such as hand gestures, facial expressions and locomotion are important during social interactions because they can be used to infer mood and intention. However it is not clear how observers use retinal signals to estimate real-world movement speed. We conducted a series of experiments to investigate adaptation-induced changes in apparent human locomotion speed, to test whether the changes show repulsion of similar speeds or global re-normalisation of all apparent speeds. Participants adapted to videos of walking or running figures at various playback speeds, and then judged the apparent movement speed of subsequently presented test clips. Their task was to report whether each test clip appeared to be faster or slower than a ‘natural’ speed. After adaptation to a slow-motion or fast-forward video, psychometric functions showed that the apparent speed of all test clips changed, becoming faster or slower respectively, consistent with global re-normalisation rather than with repulsion of test speeds close to the adapting speed. The adaptation effect depended on the retinal speed of the adapting stimulus but did not require recognizably human movements.Awareness, focused attention, and task-relevance were thought to be necessary for perceptual learning (PL): a Feature of the Stimulus (FoS) on which participants perform a task is learned, while a task-irrelevant FoS is not learned. This view has been challenged by the discovery of taskirrelevant PL, occurring for subthreshold task-irrelevant stimuli presented at an unattended, peripheral location. Here, we proof further evidence for task-irrelevant PL by showing that it can occur for subthreshold task-irrelevant FoS presented in the fovea (hence spatially attended). Our experiment was divided into 3 stages: pre-test, training, and post-test. During pre- and posttests, participants performed a 3-dot Vernier task and a 3-dot bisection task. During training, participants performed an unrelated task (luminance discrimination) on the same stimulus. The task-irrelevant FoS, manipulated during training, was the position of the middle dot: either a subthreshold left/right offset (Experimental Group) or in perfect alignment with the outer dots (Control Group). The Experimental Group showed performance improvements in the Vernier task but not in the bisection task; while the Control Group showed no effect on performance in either task. We suggest that PL can occur as an effect of mere exposure to a subthreshold taskirrelevant FoS, which is spatially attended.Feature fusion reflects temporal integration. Previous studies mostly employed foveal presentations with no attention manipulation. In this study we examined the effects of sustained spatial attention on temporal integration using feature-fusion with peripheral presentation. We used a typical feature fusion display. A vernier and anti-vernier stimuli (vernier with offset in the opposite direction than the first vernier) were presented in rapid succession in one of 2 possible locations, at 2° of eccentricity. The attended condition involved endogenous attention manipulation achieved through holding the location of the stimuli constant for the whole block (i.e., the stimuli were always presented to the right of the fixation). Thus, in this condition there was no spatial uncertainty. In the unattended condition, the stimuli could appear either to the right or left of the fixation with equal probability, generating spatial uncertainty. We found considerable feature fusion in the attended condition, suggesting that feature fusion can also occur with peripheral presentation. However, no feature fusion was found without attention (i.e., when there was uncertainty regarding the stimuli location), suggesting that spatial attention improves temporal integration. We are currently conducting similar experiments using different attentional cues to manipulate transient attention.Crowding refers to the detrimental effect of nearby elements on target perception. Recently, Harrison and Bex (Curr Biol, 2015) modeled performance in a novel orientation crowding paradigm where observers reported the orientation of a Landolt C presented alone or surrounded by a flanking C. They found that crowding decreased as flanker radius increased, and their model fit these results well. A key prediction of their model is that flankers with each radius, if presented simultaneously, will additively deteriorate performance. However, evidence from other paradigms suggests that presenting several flankers can actually improve performance, if configured to group separately from the target (e.g., Manassi et al., J Vis 2012). Here, we show a similar grouping effect in the orientation crowding paradigm. We tested observers in three conditions: no flanker, one flanker, or five aligned flankers. All of our observers experienced less crowding with five aligned flankers than one flanker, and our reproduction of Harrison and Bex’s model indeed produced the opposite result. Although Harrison and Bex’s model provides a powerful framework to explain some crowding phenomena, a truly unifying model must also account for such grouping effects, as they are likely ubiquitous in everyday environments.


Journal of Vision | 2016

Determination of the slope of the psychometric function for different stereoacuity tasks

Ignacio Serrano-Pedraza; Kathleen Vancleef; Will Herbert; Maeve Woodhouse; Jenny C. A. Read


ACM International Conference Proceeding Series | 2017

Analysis of soft data for mass provision of stereoacuity testing through a serious game for health

Gary Ushaw; Craig Sharp; J Hugill; S Rafiq; C Black; T Casanova; Kathleen Vancleef; Jenny C. A. Read; Graham Morgan

Collaboration


Dive into the Kathleen Vancleef's collaboration.

Top Co-Authors

Avatar

Ignacio Serrano-Pedraza

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge