Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kathleen Zhong is active.

Publication


Featured researches published by Kathleen Zhong.


Journal of Clinical Microbiology | 2004

Evaluation of the RealArt Malaria LC Real-Time PCR Assay for Malaria Diagnosis

Gabriella A. Farcas; Kathleen Zhong; Tony Mazzulli; Kevin C. Kain

ABSTRACT PCR-based methods have advantages over traditional microscopic methods for the diagnosis of malaria, especially in cases of low parasitemia and mixed infections. However, current PCR-based assays are often labor-intensive and not readily quantifiable and have the potential for contamination due to a requirement for postamplification sample handling. Real-time PCR can address these limitations. This study evaluated the performance characteristics of a commercial malaria real-time PCR assay (RealArt Malaria LC Assay; Artus GmbH, Hamburg, Germany) on the LightCycler platform for the detection of malaria parasites in 259 febrile returned travelers. Compared to nested PCR as the reference standard, the real-time assay had a sensitivity of 99.5%, specificity of 100%, positive predictive value of 100%, and negative predictive value of 99.6% for the detection of malaria. Our results indicate that the RealArt assay is a rapid (<45 min), sensitive, and specific method for the detection of malaria in returned travelers.


Cell Host & Microbe | 2013

Complement Activation and the Resulting Placental Vascular Insufficiency Drives Fetal Growth Restriction Associated with Placental Malaria

Andrea L. Conroy; Karlee L. Silver; Kathleen Zhong; Monique Y. Rennie; Peter A. Ward; J. Vidya Sarma; Malcolm E. Molyneux; John G. Sled; Joseph F. Fletcher; Stephen J. Rogerson; Kevin C. Kain

Placental malaria (PM) is a major cause of fetal growth restriction, yet the underlying mechanism is unclear. Complement C5a and C5a receptor levels are increased with PM. C5a is implicated in fetal growth restriction in non-infection-based animal models. In a case-control study of 492 pregnant Malawian women, we find that elevated C5a levels are associated with an increased risk of delivering a small-for-gestational-age infant. C5a was significantly increased in PM and was negatively correlated with the angiogenic factor angiopoietin-1 and positively correlated with angiopoietin-2, soluble endoglin, and vascular endothelial growth factor. Genetic or pharmacological blockade of C5a or its receptor in a mouse model of PM resulted in greater fetoplacental vessel development, reduced placental vascular resistance, and improved fetal growth and survival. These data suggest that C5a drives fetal growth restriction in PM through dysregulation of angiogenic factors essential for placental vascular remodeling resulting in placental vascular insufficiency.


Journal of Clinical Microbiology | 2001

Comparison of IsoCode STIX and FTA Gene Guard Collection Matrices as Whole-Blood Storage and Processing Devices for Diagnosis of Malaria by PCR

Kathleen Zhong; Carola Salas; Robyn Shafer; Alex Gubanov; Robert A. Gasser; Alan J. Magill; J. Russ Forney; Kevin C. Kain

ABSTRACT We compared two collection devices, IsoCode and FTA, with whole blood for the diagnosis of malaria by PCR (n = 100). Using whole blood as the reference standard, both devices were sensitive for the detection of single-species malaria infections by PCR (≥96%). However, the detection of mixed infections was suboptimal (IsoCode was 42% sensitive, and FTA was 63% sensitive).


PLOS ONE | 2010

Dysregulation of angiopoietins is associated with placental malaria and low birth weight.

Karlee L. Silver; Kathleen Zhong; Rose G. F. Leke; Diane W. Taylor; Kevin C. Kain

Background Placental malaria (PM) is associated with adverse pregnancy outcomes including low birth weight (LBW). However, the precise mechanisms by which PM induces LBW are poorly defined. Based on the essential role of angiopoietin (ANG)-1 and -2 in normal placental vascular development, we hypothesized that PM may result in the dysregulation of angiopoietins and thereby contribute to LBW outcomes. Methods and Findings In a mouse model of PM, we show that Plasmodium berghei ANKA infection of pregnant mice resulted in dysregulated angiopoietin levels and fetal growth restriction. PM lead to decreased ANG-1, increased ANG-2, and an elevated ratio of ANG-2/ANG-1 in the placenta and the serum. These observations were extended to malaria-exposed pregnant women: In a study of primigravid women prospectively followed over the course of pregnancy, Plasmodium falciparum infection was associated with a decrease in maternal plasma ANG-1 levels (P = 0.031) and an increase in the ANG-2:ANG-1 ratio (P = 0.048). ANG-1 levels recovered with successful treatment of peripheral parasitemia (P = 0.010). In a cross-sectional study of primigravidae at delivery, angiopoietin dysregulation was associated with PM (P = 0.002) and LBW (P = 0.041). Women with PM who delivered LBW infants had increased ANG-2:ANG-1 ratios (P = 0.002) compared to uninfected women delivering normal birth weight infants. Conclusions These data support the hypothesis that dysregulation of angiopoietins is associated with PM and LBW outcomes, and suggest that ANG-1 and ANG-2 levels may be clinically informative biomarkers to identify P. falciparum-infected mothers at risk of LBW deliveries.


Clinical Infectious Diseases | 2006

Real-Time Polymerase Chain Reaction Assay for the Rapid Detection and Characterization of Chloroquine-Resistant Plasmodium falciparum Malaria in Returned Travelers

Gabriella A. Farcas; Rainer Soeller; Kathleen Zhong; Alireza Zahirieh; Kevin C. Kain

BACKGROUND Imported drug-resistant malaria is a growing problem in industrialized countries. Rapid and accurate diagnosis is essential to prevent malaria-associated mortality in returned travelers. However, outside of a limited number of specialized centers, the microscopic diagnosis of malaria is slow, unreliable, and provides little information about drug resistance. Molecular diagnostics have the potential to overcome these limitations. OBJECTIVE We developed and evaluated a rapid, real-time polymerase chain reaction (PCR) assay to detect Plasmodium falciparum malaria and chloroquine (CQ)-resistance determinants in returned travelers who are febrile. METHODS A real-time PCR assay based on detection of the K76T mutation in PfCRT (K76T) of P. falciparum was developed on a LightCycler platform (Roche). The performance characteristics of the real-time assay were compared with those of the nested PCR-restriction fragment-length polymorphism (RFLP) and the sequence analyses of samples obtained from 200 febrile returned travelers, who included 125 infected with P. falciparum (48 of whom were infected CQ-susceptible [K76] and 77 of whom were CQ-resistant [T76] P. falciparum), 22 infected with Plasmodium vivax, 10 infected with Plasmodium ovale, 3 infected with Plasmodium malariae malaria, and 40 infected with other febrile syndromes. All patient samples were coded, and all analyses were performed blindly. RESULTS The real-time PCR assay detected multiple pfcrt haplotypes associated with CQ resistance in geographically diverse malaria isolates acquired by travelers. Compared with nested-PCR RFLP (the reference standard), the real-time assay was 100% sensitive and 96.2% specific for detection of the P. falciparum K76T mutation. CONCLUSION This assay is rapid, sensitive, and specific for the detection and characterization of CQ-resistant P. falciparum malaria in returned travelers. This assay is automated, standardized, and suitable for routine use in clinical diagnostic laboratories.


Journal of Clinical Microbiology | 2002

Evaluation of the Makromed Dipstick Assay versus PCR for Diagnosis of Plasmodium falciparum Malaria in Returned Travelers

David C. Richardson; Michele Ciach; Kathleen Zhong; Ian Crandall; Kevin C. Kain

ABSTRACT Microscopy has been the traditional reference standard for malaria diagnosis. However, difficulty in maintaining the required technical skills, particularly in areas where malaria is not endemic, has prompted the development of rapid nonmicroscopic diagnostic assays based on the detection of malaria parasite antigen in whole blood. In this study, we evaluated the performance of one such device, the Makromed dipstick test, blindly compared to PCR and microscopy for the diagnosis of Plasmodium falciparum malaria in 200 febrile returned travelers. The Makromed assay detects the presence of P. falciparum-specific histidine-rich protein II with an antigen capture immunochromatographic strip format. Compared to PCR as the reference standard, the dipstick assay had a sensitivity of 97.0% and a specificity of 96.0%. The positive and negative predictive values were 81.2% and 99.5%, respectively. Rapid malaria diagnostic devices may provide a useful diagnostic adjunct in a clinical setting.


Journal of Clinical Microbiology | 2007

Real-Time PCR Assay for Rapid Detection and Analysis of PfCRT Haplotypes of Chloroquine-Resistant Plasmodium falciparum Isolates from India

Jessica Keen; Gabriella A. Farcas; Kathleen Zhong; Seychelle Yohanna; Michael Dunne; Kevin C. Kain

ABSTRACT Chloroquine-resistant Plasmodium falciparum (CRPF) malaria isolates in Southeast Asia and sub-Saharan Africa share the same Plasmodium falciparum chloroquine resistance transporter (PfCRT) haplotype (CVIET; amino acids 72 to 76). It is believed that CRPF malaria emerged in Southeast Asia and spread to sub-Saharan Africa via the Indian subcontinent. Based on this assumption, we hypothesized that CRPF isolates in India should possess the same drug resistance haplotype (PfCRT haplotype CVIET) as P. falciparum isolates in Southeast Asia and Africa and that the prevalence of CRPF may be higher and more widespread in India than appreciated. To test this postulate, we utilized a standardized real-time PCR assay to assess the prevalence and distribution of PfCRT haplotypes in P. falciparum isolates (n = 406) collected from Western, Central, and Eastern states in India and compared them to isolates from South America and Africa. Based on the proportion of isolates possessing the molecular marker K76T, the prevalence of chloroquine resistance was high in all five regions of India studied (91%), as well as in Uganda (98%) and Suriname (100%). All isolates from Suriname contained the chloroquine-resistant SVMNT haplotype typical of South American isolates, and 98% of isolates from Uganda possessed the chloroquine-resistant CVIET haplotype characteristic of Southeast Asian/African strains. However, of 246 P. falciparum isolates from across India that contained the molecular marker for chloroquine resistance, 81% contained the SVMNT haplotype. In conclusion, the prevalence of CRPF malaria was high in geographically dispersed regions of India, and the primary haplotype observed, SVMNT, did not support a presumed geographic spread from contiguous Southeast Asia.


Emerging Infectious Diseases | 2012

Lack of Evidence for Chloroquine- Resistant Plasmodium falciparum Malaria, Leogane, Haiti

Ami Neuberger; Kathleen Zhong; Kevin C. Kain; Eli Schwartz

Plasmodium falciparum malaria in Haiti is considered chloroquine susceptible, although resistance transporter alleles associated with chloroquine resistance were recently detected. Among 49 patients with falciparum malaria, we found neither parasites carrying haplotypes associated with chloroquine resistance nor instances of chloroquine treatment failure. Continued vigilance to detect emergence of chloroquine resistance is needed.


Emerging Infectious Diseases | 2015

Slow Clearance of Plasmodium falciparum in Severe Pediatric Malaria, Uganda, 2011–2013

Michael Hawkes; Andrea L. Conroy; Robert O. Opoka; Sophie Namasopo; Kathleen Zhong; W. Conrad Liles; Chandy C. John; Kevin C. Kain

Plasmodium falciparum resistance to artemisinin derivatives is emerging in Asia. We examined molecular markers of resistance in 78 children in Uganda who had severe malaria and were treated with intravenous artesunate. We observed in the K13-propeller domain, A578S, a low-frequency (3/78), nonsynonymous, single-nucleotide polymorphism associated with prolonged parasite clearance.


PLOS ONE | 2017

Validation of two multiplex platforms to quantify circulating markers of inflammation and endothelial injury in severe infection

Aleksandra Leligdowicz; Andrea L. Conroy; Michael Hawkes; Kathleen Zhong; Gerald Lebovic; Michael A. Matthay; Kevin C. Kain

Biomarkers can prognosticate outcome and enable risk-stratification. In severe infection, focusing on multiple markers reflecting pathophysiological mechanisms of organ injury could enhance management and pathway-directed therapeutics. Limited data exist on the performance of multiplex biomarker platforms. Our goal was to compare endothelial and immune activation biomarkers in severe pediatric infections using two multiplex platforms. Frozen plasma from 410 children presenting to the Jinja Regional Hospital in Uganda with suspected infection was used to measure biomarkers of endothelial (Angiopoietin-2, sFlt-1, sVCAM-1, sICAM-1) and immune (IL-6, IP-10, sTNFR-1, CHI3L1) activation. Two multiplex platforms (Luminex®, EllaTM) based on monoclonal antibody sandwich immunoassays using biotin-streptavidin conjugate chemistry were selected with reagents from R&D Systems. The two platforms differed in ease and time of completion, number of samples per assay, and dynamic concentration range. Intra-assay variability assessed using a coefficient of variation (CV%) was 2.2–3.4 for Luminex® and 1.2–2.9 for EllaTM. Correlations for biomarker concentrations within dynamic range of both platforms were best for IL-6 (ρ = 0.96, p<0.0001), IP-10 (ρ = 0.94, p<0.0001) and sFlt-1 (ρ = 0.94, p<0.0001). Agreement between concentrations obtained by both methods assessed by the Bland-Altman test varied, with best agreement for CHI3L1. Our data suggest that biomarkers of endothelial and immune activation can be readily measured with multiplex platforms. Luminex® and EllaTM produced reliable results with excellent CV% values. The EllaTM platform was more automated and completed in 75 minutes, potentially compatible with near-patient use. Trends in concentrations obtained by these methods were highly correlated, although absolute values varied, suggesting caution is required when comparing data from different multiplex platforms.

Collaboration


Dive into the Kathleen Zhong's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge