Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kathreena M. Kurian is active.

Publication


Featured researches published by Kathreena M. Kurian.


Frontiers in Oncology | 2015

Current therapeutic advances targeting EGFR and EGFRvIII in glioblastoma

Emily Padfield; Hayley Patricia Ellis; Kathreena M. Kurian

Epidermal growth factor receptor (EGFR) and EGFRvIII analysis is of current interest in glioblastoma – the most common malignant primary CNS tumor, because of new EGFRvIII vaccine trials underway. EGFR activation in glioblastoma promotes cellular proliferation via activation of MAPK and PI3K–Akt pathways, and EGFRvIII is the most common variant, leading to constitutively active EGFR. This review explains EGFR and EGFRvIII signaling in GBM; describes targeted therapy approaches to date including tyrosine kinase inhibitor, antibody-based therapies, vaccines and pre-clinical RNA-based therapies, and discusses the difficulties encountered with these approaches including pathway redundancy and intratumoral heterogeneity.


Genes & Development | 2013

Widespread resetting of DNA methylation in glioblastoma-initiating cells suppresses malignant cellular behavior in a lineage-dependent manner

Stefan H. Stricker; Andrew Feber; Pär G. Engström; Helena Carén; Kathreena M. Kurian; Yasuhiro Takashima; Colin Watts; Michael Way; Peter Dirks; Paul Bertone; Austin Smith; Stephan Beck; Steven M. Pollard

Epigenetic changes are frequently observed in cancer. However, their role in establishing or sustaining the malignant state has been difficult to determine due to the lack of experimental tools that enable resetting of epigenetic abnormalities. To address this, we applied induced pluripotent stem cell (iPSC) reprogramming techniques to invoke widespread epigenetic resetting of glioblastoma (GBM)-derived neural stem (GNS) cells. GBM iPSCs (GiPSCs) were subsequently redifferentiated to the neural lineage to assess the impact of cancer-specific epigenetic abnormalities on tumorigenicity. GiPSCs and their differentiating derivatives display widespread resetting of common GBM-associated changes, such as DNA hypermethylation of promoter regions of the cell motility regulator TES (testis-derived transcript), the tumor suppressor cyclin-dependent kinase inhibitor 1C (CDKN1C; p57KIP2), and many polycomb-repressive complex 2 (PRC2) target genes (e.g., SFRP2). Surprisingly, despite such global epigenetic reconfiguration, GiPSC-derived neural progenitors remained highly malignant upon xenotransplantation. Only when GiPSCs were directed to nonneural cell types did we observe sustained expression of reactivated tumor suppressors and reduced infiltrative behavior. These data suggest that imposing an epigenome associated with an alternative developmental lineage can suppress malignant behavior. However, in the context of the neural lineage, widespread resetting of GBM-associated epigenetic abnormalities is not sufficient to override the cancer genome.


Lancet Oncology | 2017

DNA methylation-based classification and grading system for meningioma: a multicentre, retrospective analysis

Felix Sahm; Daniel Schrimpf; Damian Stichel; David T. W. Jones; Thomas Hielscher; Sebastian Schefzyk; Konstantin Okonechnikov; Christian Koelsche; David E. Reuss; David Capper; Dominik Sturm; Hans Georg Wirsching; Anna Sophie Berghoff; Peter Baumgarten; Annekathrin Kratz; Kristin Huang; Annika K. Wefers; Volker Hovestadt; Martin Sill; Hayley Patricia Ellis; Kathreena M. Kurian; Ali Fuat Okuducu; Christine Jungk; Katharina Drueschler; Matthias Schick; Melanie Bewerunge-Hudler; Christian Mawrin; Marcel Seiz-Rosenhagen; Ralf Ketter; Matthias Simon

BACKGROUND The WHO classification of brain tumours describes 15 subtypes of meningioma. Nine of these subtypes are allotted to WHO grade I, and three each to grade II and grade III. Grading is based solely on histology, with an absence of molecular markers. Although the existing classification and grading approach is of prognostic value, it harbours shortcomings such as ill-defined parameters for subtypes and grading criteria prone to arbitrary judgment. In this study, we aimed for a comprehensive characterisation of the entire molecular genetic landscape of meningioma to identify biologically and clinically relevant subgroups. METHODS In this multicentre, retrospective analysis, we investigated genome-wide DNA methylation patterns of meningiomas from ten European academic neuro-oncology centres to identify distinct methylation classes of meningiomas. The methylation classes were further characterised by DNA copy number analysis, mutational profiling, and RNA sequencing. Methylation classes were analysed for progression-free survival outcomes by the Kaplan-Meier method. The DNA methylation-based and WHO classification schema were compared using the Brier prediction score, analysed in an independent cohort with WHO grading, progression-free survival, and disease-specific survival data available, collected at the Medical University Vienna (Vienna, Austria), assessing methylation patterns with an alternative methylation chip. FINDINGS We retrospectively collected 497 meningiomas along with 309 samples of other extra-axial skull tumours that might histologically mimic meningioma variants. Unsupervised clustering of DNA methylation data clearly segregated all meningiomas from other skull tumours. We generated genome-wide DNA methylation profiles from all 497 meningioma samples. DNA methylation profiling distinguished six distinct clinically relevant methylation classes associated with typical mutational, cytogenetic, and gene expression patterns. Compared with WHO grading, classification by individual and combined methylation classes more accurately identifies patients at high risk of disease progression in tumours with WHO grade I histology, and patients at lower risk of recurrence among WHO grade II tumours (p=0·0096) from the Brier prediction test). We validated this finding in our independent cohort of 140 patients with meningioma. INTERPRETATION DNA methylation-based meningioma classification captures clinically more homogenous groups and has a higher power for predicting tumour recurrence and prognosis than the WHO classification. The approach presented here is potentially very useful for stratifying meningioma patients to observation-only or adjuvant treatment groups. We consider methylation-based tumour classification highly relevant for the future diagnosis and treatment of meningioma. FUNDING German Cancer Aid, Else Kröner-Fresenius Foundation, and DKFZ/Heidelberg Institute of Personalized Oncology/Precision Oncology Program.


Journal of Neurology, Neurosurgery, and Psychiatry | 2009

Cause of death and clinical grading criteria in a cohort of amyotrophic lateral sclerosis cases undergoing autopsy from the Scottish Motor Neurone Disease Register

Kathreena M. Kurian; R B Forbes; Shuna Colville; R J Swingler

Background: The Scottish Motor Neurone Disease Register is a population based register of amyotrophic lateral sclerosis/motor neurone disease (ALS/MND) in Scotland, with high case ascertainment levels. Objective: To investigate the cause of death by autopsy and assess grading criteria in a cohort of cases of ALS from the Scottish MND Register. Methods: The records of 44 patients undergoing autopsy were reviewed to determine the cause of death, clinical assessment (El Escorial and modified World Federation of Neurology criteria) during life and neuropathological autopsy findings. Results: In a cohort of 44 cases undergoing autopsy between 1989 and 1998, the cause of death could be directly or indirectly (bronchopneumonia, aspiration/pneumonia and respiratory failure) attributed to MND in 32/44 (73%) cases. The clinical diagnosis of MND was confirmed at autopsy in 44/44 (100%) cases, 3/44 (7%) cases showed coexistent neurodegenerative disease and 5/44 (11%) were familial MND cases. Conclusions: Within our cohort, MND contributes to death in the majority of cases and there is excellent clinicopathological correlation, irrespective of the clinical grading criteria used. However, the autopsy rate is low (4%) and further larger studies are required to identify heterogeneity within the disease.


Frontiers in Oncology | 2014

Pediatric medulloblastoma - update on molecular classification driving targeted therapies.

Ruth-Mary deSouza; Benjamin R. T. Jones; S Lowis; Kathreena M. Kurian

As advances in the molecular and genetic profiling of pediatric medulloblastoma evolve, associations with prognosis and treatment are found (prognostic and predictive biomarkers) and research is directed at molecular therapies. Medulloblastoma typically affects young patients, where the implications of any treatment on the developing brain must be carefully considered. The aim of this article is to provide a clear comprehensible update on the role molecular profiling and subgroups in pediatric medulloblastoma as it is likely to contribute significantly toward prognostication. Knowledge of this classification is of particular interest because there are new molecular therapies targeting the Shh subgroup of medulloblastomas.


Frontiers in Oncology | 2015

Current Challenges in Glioblastoma: Intratumour Heterogeneity, Residual Disease, and Models to Predict Disease Recurrence

Hayley Patricia Ellis; Mark Greenslade; Ben J Powell; Inmaculada Spiteri; Andrea Sottoriva; Kathreena M. Kurian

Glioblastoma (GB) is the most common primary malignant brain tumor, and despite the availability of chemotherapy and radiotherapy to combat the disease, overall survival remains low with a high incidence of tumor recurrence. Technological advances are continually improving our understanding of the disease, and in particular, our knowledge of clonal evolution, intratumor heterogeneity, and possible reservoirs of residual disease. These may inform how we approach clinical treatment and recurrence in GB. Mathematical modeling (including neural networks) and strategies such as multiple sampling during tumor resection and genetic analysis of circulating cancer cells, may be of great future benefit to help predict the nature of residual disease and resistance to standard and molecular therapies in GB.


Frontiers in Oncology | 2015

Current understanding of BRAF alterations in diagnosis, prognosis, and therapeutic targeting in pediatric low-grade gliomas

Catherine Louise Penman; Claire Faulkner; Stephen P. Lowis; Kathreena M. Kurian

The mitogen-activated protein kinase (MAPK) pathway is known to play a key role in the initiation and maintenance of many tumors as well as normal development. This often occurs through mutation of the genes encoding RAS and RAF proteins which are involved in signal transduction in this pathway. BRAF is one of three RAF kinases which act as downstream effectors of growth factor signaling leading to cell cycle progression, proliferation, and survival. Initially reported as a point mutation (V600E) in the majority of metastatic melanomas, other alterations in the BRAF gene have now been reported in a variety of human cancers including papillary thyroid cancer, colon carcinomas, hairy cell leukemia, and more recently in gliomas. The identification of oncogenic mutations in the BRAF gene have led to a revolution in the treatment of metastatic melanoma using targeted molecular therapies that affect the MAPK pathway either directly through BRAF inhibition or downstream through inhibition of MEK. This review describes the molecular biology of BRAF in the context of pediatric low-grade gliomas, the role of BRAF as a diagnostic marker, the prognostic implications of BRAF, and evidence for therapeutic targeting of BRAF.


Frontiers in Oncology | 2014

Prognostic and Predictive Biomarkers in Adult and Pediatric Gliomas: Toward Personalized Treatment

Harry R Haynes; Sandra Camelo-Piragua; Kathreena M. Kurian

It is increasingly clear that both adult and pediatric glial tumor entities represent collections of neoplastic lesions, each with individual pathological molecular events and treatment responses. In this review, we discuss the current prognostic biomarkers validated for clinical use or with future clinical validity for gliomas. Accurate prognostication is crucial for managing patients as treatments may be associated with high morbidity and the benefits of high risk interventions must be judged by the treating clinicians. We also review biomarkers with predictive validity, which may become clinically relevant with the development of targeted therapies for adult and pediatric gliomas.


British Journal of Neurosurgery | 2015

EGFR and EGFRvIII analysis in glioblastoma as therapeutic biomarkers

Claire Faulkner; Abigail Palmer; Hannah R Williams; Christopher Wragg; Harry R Haynes; Paul White; Ruth-Mary deSouza; Maggie Williams; Kirsten Hopkins; Kathreena M. Kurian

Abstract Introduction. EGFR and EGFRvIII analysis is of current interest because of new EGFRvIII vaccine trials opened in the UK. EGFR activation promotes cellular proliferation via activation of MAPK and PI3K-Akt pathways. EGFRvIII is the most common variant resulting from an in-frame deletion of 801bp, leading to constitutively active EGFR. Method. 51 glioblastoma samples from a cohort of 50 patients were tested for EGFR amplification by FISH and immunohistochemistry and EGFRvIII expression by reverse-transcriptase PCR (RT-PCR), and immunohistochemistry. EGFR and EGFRvIII expression was compared with Overall Survival in the cohort. Results. Overall 22/51 samples (43%) were positive for EGFR, 16/51 (31%) were positive for EGFRvIII and 13/51 (25%) were positive for both. 9/51 cases (18%) were positive for EGFR alone, and 3/51 (6%) were positive for EGFRvIII alone. Of the EGFR positive cases, 22/51 (43%) were positive by FISH, 24/51 (47%) were positive by IHC and 2/51 (4%) were discrepant between methods (positive by IHC but non-amplified by FISH). Of the EGFRvIII positive cases, 16/51 (31%) were positive by RT-PCR, 17/51 (33%) were positive by IHC and 1/51 (2%) sample was discrepant (positive by IHC but not by RT-PCR). Neither EGFRvIII or EGFR are predictive of overall survival in this cohort. Conclusion. In our cohort, 25/51 (49%) of GBM showed EGFR alterations, including 16/51 (31%) with EGFRvIII. There was high concordance between IHC and FISH (96%) and IHC and RT-PCR (98%) as diagnostic methods. Neither EGFR or EGFRvIII is predictive of overall survival in this cohort. These results are key for selecting patients for novel individualised anti-EGFR therapies.


Frontiers in Oncology | 2014

Biological Rationale for the Use of PPARγ Agonists in Glioblastoma

Hayley Patricia Ellis; Kathreena M. Kurian

Glioblastoma multiforme (GBM) is the most common primary intrinsic central nervous system tumor and has an extremely poor overall survival with only 10% patients being alive after 5 years. There has been interesting preliminary evidence suggesting that diabetic patients receiving peroxisome proliferator-activated receptor gamma (PPARγ) agonists, a group of anti-diabetic, thiazolidinedione drugs, have an increased median survival for glioblastoma. Although thiazolidinediones are effective oral medications for type 2 diabetes, certain agonists carry the risk for congestive heart failure, myocardial infarction, cardiovascular disease, bone loss, weight gain, and fluid retention as side-effects. The nuclear receptor transcription factor PPARγ has been found to be expressed in high grade gliomas, and its activation has been shown to have several antineoplastic effects on human and rat glioma cell lines, and in some instances an additional protective increase in antioxidant enzymes has been observed in normal astrocytes. At present, no clinical trials are underway with regards to treating glioma patients using PPARγ agonists. This review presents the case for evaluating the potential of PPARγ agonists as novel adjuvants in the treatment of refractory high grade glioma.

Collaboration


Dive into the Kathreena M. Kurian's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stephen P. Lowis

Bristol Royal Hospital for Children

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge