Kathrin Altwegg
University of Bern
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kathrin Altwegg.
Science | 2015
Kathrin Altwegg; H. Balsiger; Akiva Bar-Nun; Jean-Jacques Berthelier; André Bieler; P. Bochsler; Christelle Briois; Ursina Maria Calmonte; Michael R. Combi; J. De Keyser; P. Eberhardt; Björn Fiethe; S. A. Fuselier; Sébastien Gasc; Tamas I. Gombosi; Kenneth Calvin Hansen; Myrtha Hässig; Annette Jäckel; Ernest Kopp; A. Korth; L. Leroy; U. Mall; Bernard Marty; Olivier Mousis; Eddy Neefs; Tobias Owen; H. Rème; Martin Rubin; Thierry Sémon; Chia-Yu Tzou
The provenance of water and organic compounds on Earth and other terrestrial planets has been discussed for a long time without reaching a consensus. One of the best means to distinguish between different scenarios is by determining the deuterium-to-hydrogen (D/H) ratios in the reservoirs for comets and Earth’s oceans. Here, we report the direct in situ measurement of the D/H ratio in the Jupiter family comet 67P/Churyumov-Gerasimenko by the ROSINA mass spectrometer aboard the European Space Agency’s Rosetta spacecraft, which is found to be (5.3 ± 0.7) × 10−4—that is, approximately three times the terrestrial value. Previous cometary measurements and our new finding suggest a wide range of D/H ratios in the water within Jupiter family objects and preclude the idea that this reservoir is solely composed of Earth ocean–like water.
Science | 2015
Myrtha Hässig; Kathrin Altwegg; H. Balsiger; Akiva Bar-Nun; J. J. Berthelier; André Bieler; P. Bochsler; Christelle Briois; Ursina Maria Calmonte; Michael R. Combi; J. De Keyser; P. Eberhardt; Björn Fiethe; S. A. Fuselier; M. Galand; Sébastien Gasc; Tamas I. Gombosi; Kenneth Calvin Hansen; Annette Jäckel; H. U. Keller; Ernest Kopp; A. Korth; E. Kührt; Léna Le Roy; U. Mall; Bernard Marty; Olivier Mousis; Eddy Neefs; Tobias Owen; H. Rème
Comets contain the best-preserved material from the beginning of our planetary system. Their nuclei and comae composition reveal clues about physical and chemical conditions during the early solar system when comets formed. ROSINA (Rosetta Orbiter Spectrometer for Ion and Neutral Analysis) onboard the Rosetta spacecraft has measured the coma composition of comet 67P/Churyumov-Gerasimenko with well-sampled time resolution per rotation. Measurements were made over many comet rotation periods and a wide range of latitudes. These measurements show large fluctuations in composition in a heterogeneous coma that has diurnal and possibly seasonal variations in the major outgassing species: water, carbon monoxide, and carbon dioxide. These results indicate a complex coma-nucleus relationship where seasonal variations may be driven by temperature differences just below the comet surface.
Journal of Geophysical Research | 1995
H. Balsiger; Kathrin Altwegg; J. Geiss
The D/H ratio and the 18O/16O ratio in hydronium ions in the gas coma of comet Halley have been determined from ion data obtained by the high intensity sensor (HIS) of the ion mass spectrometer (IMS) on board the spacecraft Giotto in 1986. The HIS instrument measured reliable data for the water group ions over a large distance range from the nucleus. We could therefore minimize the statistical errors. This large range also allowed us to study the systematic influence of formaldehyde on the D/H ratio in the hydronium ion and to deduce from the hydronium ion a D/H ratio for the water molecule. The measured 18O/16O ratio of (1.93±0.12) × 10−3 is compatible with the telluric value of 2.06 × 10−3. The D/H ratio for the hydronium ion measured is D/H = 3.08−0.53+0.38 × 10−4. We show that since the water chemistry is not significantly different for deuterated and nondeuterated water molecules and ions and since the contribution from other deuterated molecules to the deuterium abundance in the hydronium ion is small, the D/H value of the neutral water molecule is not significantly different from the value determined for the ion, although the uncertainty is somewhat larger. An upper limit for the deuterium abundance in formaldehyde in comet Halley can be derived from the D/H ratio in the hydronium ion as a function of distance from the nucleus. From our results we conclude that the D/H ratio in formaldehyde is certainly smaller than 2% and probably smaller than 0.5% and that the enrichment of the deuterium in the hydronium ion due to formaldehyde is lower than 5%. The D/H ratio in water in comet Halley is therefore significantly higher than the telluric sea water value, whereas the deuterium enrichment in formaldehyde is not as high as, for example, that observed in the Orion compact ridge.
Astronomy and Astrophysics | 2015
Léna Le Roy; Kathrin Altwegg; H. Balsiger; J. J. Berthelier; André Bieler; Christelle Briois; Ursina Maria Calmonte; Michael R. Combi; Johan De Keyser; Frederik Dhooghe; Björn Fiethe; S. A. Fuselier; Sébastien Gasc; Tamas I. Gombosi; Myrtha Hässig; Annette Jäckel; Martin Rubin; Chia-Yu Tzou
The ESA Rosetta spacecraft (S/C) is tracking comet 67P/Churyumov-Gerasimenko in close vicinity. This prolonged en- counter enables studying the evolution of the volatile coma composition. Aims. Our work aims at comparing the diversity of the coma of 67P/Churyumov-Gerasimenko at large heliocentric distance to study the evolution of the comet during its passage around the Sun and at trying to classify it relative to other comets. Methods. We used the Double Focussing Mass Spectrometer (DFMS) of the ROSINA experiment on ESA’s Rosetta mission to determine relative abundances of major and minor volatile species. This study is restricted to species that have previously been detected elsewhere. Results. We detect almost all species currently known to be present in cometary coma with ROSINA DFMS. As DFMS measured the composition locally, we cannot derive a global abundance, but we compare measurements from the summer and the winter hemisphere with known abundances from other comets. Differences between relative abundances between summer and winter hemispheres are large, which points to a possible evolution of the cometary surface. This comet appears to be very rich in CO2 and ethane. Heavy oxygenated compounds such as ethylene glycol are underabundant at 3 AU, probably due to their high sublimation temperatures, but nevertheless, their presence proves that Kuiper belt comets also contain complex organic molecules.
Science | 2015
Martin Rubin; Kathrin Altwegg; H. Balsiger; Akiva Bar-Nun; Jean-Jacques Berthelier; André Bieler; P. Bochsler; C. Briois; Ursina Maria Calmonte; Michael R. Combi; J. De Keyser; Frederik Dhooghe; P. Eberhardt; Björn Fiethe; S. A. Fuselier; Sébastien Gasc; Tamas I. Gombosi; Kenneth Calvin Hansen; Myrtha Hässig; Annette Jäckel; Ernest Kopp; A. Korth; Léna Le Roy; U. Mall; Bernard Marty; Olivier Mousis; Tobias Owen; H. Rème; Thierry Sémon; Chia-Yu Tzou
Making comets in the cold The speciation of nitrogen compounds in comets can tell us about their history. Comets are some of the most ancient bodies in the solar system and should contain the nitrogen compounds that were abundant when they formed. Using the ROSINA mass spectrometer aboard the Rosetta spacecraft orbiting comet 67P/Churyumov-Gerasimenko, Rubin et al. found molecular nitrogen at levels that are depleted compared to those in the primordial solar system. Depletion of such a magnitude suggests that the comet formed either from the low-temperature agglomeration of pristine amorphous water ice grains or from clathrates. Science, this issue p. 232 Direct measurements of N2 by instruments aboard the Rosetta spacecraft provide clues about the comet’s long history. Molecular nitrogen (N2) is thought to have been the most abundant form of nitrogen in the protosolar nebula. It is the main N-bearing molecule in the atmospheres of Pluto and Triton and probably the main nitrogen reservoir from which the giant planets formed. Yet in comets, often considered the most primitive bodies in the solar system, N2 has not been detected. Here we report the direct in situ measurement of N2 in the Jupiter family comet 67P/Churyumov-Gerasimenko, made by the Rosetta Orbiter Spectrometer for Ion and Neutral Analysis mass spectrometer aboard the Rosetta spacecraft. A N2/CO ratio of (5.70±0.66)×10−3 (2σ standard deviation of the sampled mean) corresponds to depletion by a factor of ~25.4 ± 8.9 as compared to the protosolar value. This depletion suggests that cometary grains formed at low-temperature conditions below ~30 kelvin.
Nature | 2015
André Bieler; Kathrin Altwegg; H. Balsiger; Akiva Bar-Nun; Jean-Jacques Berthelier; P. Bochsler; C. Briois; Ursina Maria Calmonte; Michael R. Combi; J. De Keyser; E. F. van Dishoeck; Björn Fiethe; S. A. Fuselier; Sébastien Gasc; Tamas I. Gombosi; Kenneth Calvin Hansen; Myrtha Hässig; Annette Jäckel; Ernest Kopp; A. Korth; L. Le Roy; U. Mall; Romain Maggiolo; Bernard Marty; Olivier Mousis; Tobias Owen; H. Rème; Martin Rubin; Thierry Sémon; Chia-Yu Tzou
The composition of the neutral gas comas of most comets is dominated by H2O, CO and CO2, typically comprising as much as 95 per cent of the total gas density. In addition, cometary comas have been found to contain a rich array of other molecules, including sulfuric compounds and complex hydrocarbons. Molecular oxygen (O2), however, despite its detection on other icy bodies such as the moons of Jupiter and Saturn, has remained undetected in cometary comas. Here we report in situ measurement of O2 in the coma of comet 67P/Churyumov–Gerasimenko, with local abundances ranging from one per cent to ten per cent relative to H2O and with a mean value of 3.80 ± 0.85 per cent. Our observations indicate that the O2/H2O ratio is isotropic in the coma and does not change systematically with heliocentric distance. This suggests that primordial O2 was incorporated into the nucleus during the comet’s formation, which is unexpected given the low upper limits from remote sensing observations. Current Solar System formation models do not predict conditions that would allow this to occur.
Science Advances | 2016
Kathrin Altwegg; H. Balsiger; Akiva Bar-Nun; J. J. Berthelier; André Bieler; P. Bochsler; Christelle Briois; Ursina Maria Calmonte; Michael R. Combi; H. Cottin; Johan De Keyser; Frederik Dhooghe; Björn Fiethe; S. A. Fuselier; Sébastien Gasc; Tamas I. Gombosi; Kenneth Calvin Hansen; Myrtha Haessig; Annette Jäckel; Ernest Kopp; A. Korth; Léna Le Roy; U. Mall; Bernard Marty; Olivier Mousis; Tobias Owen; H. Rème; Martin Rubin; Thierry Sémon; Chia Yu Tzou
The detection of glycine and phosphorus in the coma of 67P shows that comets contain all ingredients to help spark life on Earth. The importance of comets for the origin of life on Earth has been advocated for many decades. Amino acids are key ingredients in chemistry, leading to life as we know it. Many primitive meteorites contain amino acids, and it is generally believed that these are formed by aqueous alterations. In the collector aerogel and foil samples of the Stardust mission after the flyby at comet Wild 2, the simplest form of amino acids, glycine, has been found together with precursor molecules methylamine and ethylamine. Because of contamination issues of the samples, a cometary origin was deduced from the 13C isotopic signature. We report the presence of volatile glycine accompanied by methylamine and ethylamine in the coma of 67P/Churyumov-Gerasimenko measured by the ROSINA (Rosetta Orbiter Spectrometer for Ion and Neutral Analysis) mass spectrometer, confirming the Stardust results. Together with the detection of phosphorus and a multitude of organic molecules, this result demonstrates that comets could have played a crucial role in the emergence of life on Earth.
Astronomy and Astrophysics | 2015
André Bieler; Kathrin Altwegg; H. Balsiger; Jean-Jacques Berthelier; Ursina Maria Calmonte; Michael R. Combi; Johan De Keyser; Björn Fiethe; N. Fougere; S. A. Fuselier; Sébastien Gasc; Tamas I. Gombosi; Kenneth Calvin Hansen; Myrtha Hässig; Zhenguang Huang; Annette Jäckel; Xianzhe Jia; Léna Le Roy; U. Mall; H. Rème; Martin Rubin; Valeriy M. Tenishev; Gabor Zsolt Toth; Chia-Yu Tzou; Peter Wurz
67P/Churyumov-Gerasimenko (hereafter 67P) is a Jupiter-family comet and the object of investigation of the European Space Agency mission Rosetta. This report presents the first full 3D simulation results of 67P’s neutral gas coma. In this study we include results from a direct simulation Monte Carlo method, a hydrodynamic code, and a purely geometric calculation which computes the total illuminated surface area on the nucleus. All models include the triangulated 3D shape model of 67P as well as realistic illumination and shadowing conditions. The basic concept is the assumption that these illumination conditions on the nucleus are the main driver for the gas activity of the comet. As a consequence, the total production rate of 67P varies as a function of solar insolation. The best agreement between the model and the data is achieved when gas fluxes on the night side are in the range of 7% to 10% of the maximum flux, accounting for contributions from the most volatile components. To validate the output of our numerical simulations we compare the results of all three models to in situ gas number density measurements from the ROSINA COPS instrument. We are able to reproduce the overall features of these local neutral number density measurements of ROSINA COPS for the time period between early August 2014 and January 1 2015 with all three models. Some details in the measurements are not reproduced and warrant further investigation and refinement of the models. However, the overall assumption that illumination conditions on the nucleus are at least an important driver of the gas activity is validated by the models. According to our simulation results we find the total production rate of 67P to be constant between August and November 2014 with a value of about 1 × 1026 molecules s−1.
Astronomy and Astrophysics | 2016
C. Goetz; C. Koenders; I. Richter; Kathrin Altwegg; J. L. Burch; C. M. Carr; E. Cupido; Anders Eriksson; C. Güttler; P. Henri; P. Mokashi; Z. Nemeth; H. Nilsson; Martin Rubin; H. Sierks; Bruce T. Tsurutani; Claire Vallat; M. Volwerk; K.-H. Glassmeier
Context: The Rosetta magnetometer RPC-MAG has been exploring the plasma environment of comet 67P/Churyumov-Gerasimenko since August 2014. The first months were dominated by low-frequency waves which evolved into more complex features. However, at the end of July 2015, close to perihelion, the magnetometer detected a region that did not contain any magnetic field at all. Aims: These signatures match the appearance of a diamagnetic cavity as was observed at comet 1P/Halley in 1986. The cavity here is more extended than previously predicted by models and features unusual magnetic field configurations, which need to be explained Methods: The onboard magnetometer data were analyzed in detail and used to estimate the outgassing rate. A minimum variance analysis was used to determine boundary normals. Results. Our analysis of the data acquired by the Rosetta Plasma Consortium instrumentation confirms the existence of a diamagnetic cavity. The size is larger than predicted by simulations, however. One possible explanation are instabilities that are propagating along the cavity boundary and possibly a low magnetic pressure in the solar wind. This conclusion is supported by a change in sign of the Sun-pointing component of the magnetic field. Evidence also indicates that the cavity boundary is moving with variable velocities ranging from 230−500 m/s.
Annales Geophysicae | 2015
I. Richter; C. Koenders; H. U. Auster; Dennis Frühauff; C. Götz; Philip Heinisch; C. Perschke; Uwe Motschmann; Bernd Stoll; Kathrin Altwegg; J. L. Burch; C. M. Carr; E. Cupido; Anders Eriksson; P. Henri; R. Goldstein; J.-P. Lebreton; P. Mokashi; Z. Nemeth; H. Nilsson; Martin Rubin; K. Szego; Bruce T. Tsurutani; Claire Vallat; M. Volwerk; K.-H. Glassmeier
Abstract. We report on magnetic field measurements made in the innermost coma of 67P/Churyumov-Gerasimenko in its low-activity state. Quasi-coherent, large-amplitude (δ B/B ~ 1), compressional magnetic field oscillations at ~ 40 mHz dominate the immediate plasma environment of the nucleus. This differs from previously studied cometary interaction regions where waves at the cometary ion gyro-frequencies are the main feature. Thus classical pickup-ion-driven instabilities are unable to explain the observations. We propose a cross-field current instability associated with newborn cometary ion currents as a possible source mechanism.