Kathrin Renner
University of Regensburg
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kathrin Renner.
Biochemical Journal | 2004
Eveline Hütter; Kathrin Renner; Gerald Pfister; Petra Stöckl; Pidder Jansen-Dürr; Erich Gnaiger
Limitation of lifespan in replicative senescence is related to oxidative stress, which is probably both the cause and consequence of impaired mitochondrial respiratory function. The respiration of senescent human diploid fibroblasts was analysed by high-resolution respirometry. To rule out cell-cycle effects, proliferating and growth-arrested young fibroblasts were used as controls. Uncoupled respiration, as normalized to citrate synthase activity, remained unchanged, reflecting a constant capacity of the respiratory chain. Oligomycin-inhibited respiration, however, was significantly increased in mitochondria of senescent cells, indicating a lower coupling of electron transport with phosphorylation. In contrast, growth-arrested young fibroblasts exhibited a higher coupling state compared with proliferating controls. In intact cells, partial uncoupling may lead to either decreased oxidative ATP production or a compensatory increase in routine respiration. To distinguish between these alternatives, we subtracted oligomycin-inhibited respiration from routine respiration, which allowed us to determine the part of respiratory activity coupled with ATP production. Despite substantial differences in the respiratory control ratio, ranging from 4 to 11 in the different experimental groups, a fixed proportion of respiratory capacity was maintained for coupled oxidative phosphorylation in all the experimental groups. This finding indicates that the senescent cells fully compensate for increased proton leakage by enhanced electron-transport activity in the routine state. These results provide a new insight into age-associated defects in mitochondrial function and compensatory mechanisms in intact cells.
Journal of Immunology | 2010
Katrin Dietl; Kathrin Renner; Katja Dettmer; Birgit Timischl; Karin Eberhart; C Dorn; Claus Hellerbrand; Michael Kastenberger; Peter J. Oefner; Reinhard Andreesen; Eva Gottfried; Marina Kreutz
High concentrations of lactic acid (LA) are found under various pathophysiological conditions and are accompanied by an acidification of the environment. To study the impact of LA on TNF secretion, human LPS-stimulated monocytes were cultured with or without LA or the corresponding pH control. TNF secretion was significantly suppressed by low concentrations of LA (≤10 mM), whereas only strong acidification had a similar effect. This result was confirmed in a coculture model of human monocytes with multicellular tumor spheroids. Blocking synthesis of tumor-derived lactate by oxamic acid, an inhibitor of lactate dehydrogenase, reversed the suppression of TNF secretion in this coculture model. We then investigated possible mechanisms underlying the suppression. Uptake of [3-13C]lactate by monocytes was shown by hyphenated mass spectrometry. As lactate might interfere with glycolysis, the glycolytic flux of monocytes was determined. We added [1,2-13C2]glucose to the culture medium and measured glucose uptake and conversion into [2,3-13C2]lactate. Activation of monocytes increased the glycolytic flux and the secretion of lactate, whereas oxygen consumption was decreased. Addition of unlabeled LA resulted in a highly significant decrease in [2,3-13C2]lactate secretion, whereas a mere corresponding decrease in pH exerted a less pronounced effect. Both treatments increased intracellular [2,3-13C2]lactate levels. Blocking of glycolysis by 2-deoxyglucose strongly inhibited TNF secretion, whereas suppression of oxidative phosphorylation by rotenone had little effect. These results support the hypothesis that TNF secretion by human monocytes depends on glycolysis and suggest that LA and acidification may be involved in the suppression of TNF secretion in the tumor environment.
Biochimica et Biophysica Acta | 2003
Kathrin Renner; Albert Amberger; Günther Konwalinka; Reinhard Kofler; Erich Gnaiger
Mitochondrial damage with release of cytochrome c is implicated in cell death signalling pathways. To examine mitochondrial function in apoptotic cells, we applied high-resolution respirometry to human leukemia cells arrested in the G1- and S-phase by exposure to the glucocorticoid dexamethasone and nucleotide analogue gemcitabine. At 30% apoptosis, opposite effects were observed on respiratory capacity (71% and 131% of controls, respectively). These changes correlated with alterations in cell size, cytosolic, and mitochondrial marker enzymes. Mitochondrial ATP production and membrane potential were maintained in all treatments, as deduced from high respiratory uncoupling control ratios (UCR). Bcl-2 over-expression did not prevent apoptosis after gemcitabine-treatment, but protected dexamethasone-treated cells from apoptosis, without fully preventing the decline of respiration and cell size. These results, therefore, provide conclusive evidence that alterations in respiratory capacity and enzyme activities per cell are mainly caused by opposite changes in cell size, occurring upon cell cycle arrest triggered by dexamethasone and gemcitabine in the early phase of apoptosis.
The FASEB Journal | 2004
Walther Parson; Romana Kirchebner; Roswitha Mühlmann; Kathrin Renner; Anita Kofler; Stefan Schmidt; Reinhard Kofler
Cancer cell lines are used worldwide in biological research, and data interpretation depends on unambiguous attribution of the respective cell line to its original source. Short‐tandem‐repeat (STR) profiling (DNA fingerprinting) is the method of choice for this purpose; however, the genetic stability of cell lines under various experimental conditions is not well defined. We tested the effect of long‐term culture, subcloning, and generation of drug‐resistant subclones on fingerprinting profiles in four widely used leukemia cell lines. The DNA fingerprinting profile remained unaltered in two of them (U937 and K562) throughout 12 months in culture, and the vast majority of subclones derived therefrom by limiting dilution after long‐term culture revealed the same profile, indicating a high degree of stability and clonotypic homogeneity. In contrast, two other cell lines (CCRF‐CEM and Jurkat) showed marked alterations in DNA fingerprinting profiles during long‐term culture. Limiting dilution subcloning revealed extensive clonotypic heterogeneity with subclones differing in up to eight STR loci from the parental culture. Similar heterogeneity was observed in subclones generated by selection culture for drug resistance where DNA fingerprinting proved useful in identifying possible resistance mechanisms. Thus, common tissue culture procedures may dramatically affect the fingerprinting profile of certain cell lines and thus render definition of their origin difficult.
Blood | 2014
Christian Schmidl; Kathrin Renner; Katrin Peter; Ruediger Eder; Timo Lassmann; Piotr J. Balwierz; Masayoshi Itoh; Sayaka Nagao-Sato; Hideya Kawaji; Piero Carninci; Harukazu Suzuki; Yoshihide Hayashizaki; Reinhard Andreesen; David A. Hume; Petra Hoffmann; Alistair R. R. Forrest; Marina Kreutz; Matthias Edinger; Michael Rehli
Human blood monocytes comprise at least 3 subpopulations that differ in phenotype and function. Here, we present the first in-depth regulome analysis of human classical (CD14(++)CD16(-)), intermediate (CD14(+)CD16(+)), and nonclassical (CD14(dim)CD16(+)) monocytes. Cap analysis of gene expression adapted to Helicos single-molecule sequencing was used to map transcription start sites throughout the genome in all 3 subsets. In addition, global maps of H3K4me1 and H3K27ac deposition were generated for classical and nonclassical monocytes defining enhanceosomes of the 2 major subsets. We identified differential regulatory elements (including promoters and putative enhancers) that were associated with subset-specific motif signatures corresponding to different transcription factor activities and exemplarily validated novel downstream enhancer elements at the CD14 locus. In addition to known subset-specific features, pathway analysis revealed marked differences in metabolic gene signatures. Whereas classical monocytes expressed higher levels of genes involved in carbohydrate metabolism, priming them for anaerobic energy production, nonclassical monocytes expressed higher levels of oxidative pathway components and showed a higher mitochondrial routine activity. Our findings describe promoter/enhancer landscapes and provide novel insights into the specific biology of human monocyte subsets.
The FASEB Journal | 2016
Cesare Granata; Rodrigo S. F. Oliveira; Jonathan P. Little; Kathrin Renner; David Bishop
Exercise training has been associated with increased mitochondrial content and respiration. However, no study to date has compared in parallel how training at different intensities affects mitochondrial respiration and markers of mitochondrial biogenesis. Twenty‐nine healthy men performed 4 wk (12 cycling sessions) of either sprint interval training [SIT; 4–10 × 30‐s all‐out bouts at ~200% of peak power output (WPeak)], high‐intensity interval training (HIIT; 4–7 × 4‐min intervals at ~90% WPeak), or sublactate threshold continuous training (STCT; 20–36 min at ~65% WPeak). The STCT and HIIT groups were matched for total work. Resting biopsy samples (vastus lateralis) were obtained before and after training. The maximal mitochondrial respiration in permeabilized muscle fibers increased significantly only after SIT (25%). Similarly, the protein content of peroxisome proliferator‐activated receptor g coactivator (PGC)‐1α, p53, and plant homeodomain finger‐containing protein 20 (PHF20) increased only after SIT (60–90%). Conversely, citrate synthase activity, and the protein content of TFAM and subunits of the electron transport system complexes remained unchanged throughout. Our findings suggest that training intensity is an important factor that regulates training‐induced changes in mitochondrial respiration and that there is an apparent dissociation between training‐induced changes in mitochondrial respiration and mitochondrial content. Moreover, changes in the protein content of PGC‐1α, p53, and PHF20 are more strongly associated with training‐induced changes in mitochondrial respiration than mitochondrial content.—Granata, C., Oliveira, R. S. F., Little, J. P., Renner, K., Bishop, D. J. Training intensity modulates changes in PGC‐1α and p53 protein content and mitochondrial respiration, but not markers of mitochondrial content in human skeletal muscle. FASEB J. 30, 959–970 (2016). www.fasebj.org
The New England Journal of Medicine | 2014
Enriko Klootwijk; Markus Reichold; Amanda Helip-Wooley; Asad Tolaymat; Carsten Broeker; Steven L. Robinette; Joerg Reinders; Dominika Peindl; Kathrin Renner; Karin Eberhart; Nadine Assmann; Peter J. Oefner; Katja Dettmer; Christina Sterner; Josef Schroeder; Niels Zorger; Ralph Witzgall; Stephan W. Reinhold; Horia Stanescu; Detlef Bockenhauer; Graciana Jaureguiberry; Holly Courtneidge; Andrew M. Hall; Anisha Wijeyesekera; Elaine Holmes; Jeremy K. Nicholson; Kevin P. O'Brien; Isa Bernardini; Donna Krasnewich; Mauricio Arcos-Burgos
BACKGROUND In renal Fanconis syndrome, dysfunction in proximal tubular cells leads to renal losses of water, electrolytes, and low-molecular-weight nutrients. For most types of isolated Fanconis syndrome, the genetic cause and underlying defect remain unknown. METHODS We clinically and genetically characterized members of a five-generation black family with isolated autosomal dominant Fanconis syndrome. We performed genomewide linkage analysis, gene sequencing, biochemical and cell-biologic investigations of renal proximal tubular cells, studies in knockout mice, and functional evaluations of mitochondria. Urine was studied with the use of proton nuclear magnetic resonance ((1)H-NMR) spectroscopy. RESULTS We linked the phenotype of this familys Fanconis syndrome to a single locus on chromosome 3q27, where a heterozygous missense mutation in EHHADH segregated with the disease. The p.E3K mutation created a new mitochondrial targeting motif in the N-terminal portion of EHHADH, an enzyme that is involved in peroxisomal oxidation of fatty acids and is expressed in the proximal tubule. Immunocytofluorescence studies showed mistargeting of the mutant EHHADH to mitochondria. Studies of proximal tubular cells revealed impaired mitochondrial oxidative phosphorylation and defects in the transport of fluids and a glucose analogue across the epithelium. (1)H-NMR spectroscopy showed elevated levels of mitochondrial metabolites in urine from affected family members. Ehhadh knockout mice showed no abnormalities in renal tubular cells, a finding that indicates a dominant negative nature of the mutation rather than haploinsufficiency. CONCLUSIONS Mistargeting of peroxisomal EHHADH disrupts mitochondrial metabolism and leads to renal Fanconis syndrome; this indicates a central role of mitochondria in proximal tubular function. The dominant negative effect of the mistargeted protein adds to the spectrum of monogenic mechanisms of Fanconis syndrome. (Funded by the European Commission Seventh Framework Programme and others.).
Frontiers in Immunology | 2017
Kathrin Renner; Katrin Singer; Gudrun E. Koehl; Edward K. Geissler; Katrin Peter; Peter J. Siska; Marina Kreutz
Cytotoxic T lymphocytes and NK cells play an important role in eliminating malignant tumor cells and the number and activity of tumor-infiltrating T cells represent a good marker for tumor prognosis. Based on these findings, immunotherapy, e.g., checkpoint blockade, has received considerable attention during the last couple of years. However, for the majority of patients, immune control of their tumors is gray theory as malignant cells use effective mechanisms to outsmart the immune system. Increasing evidence suggests that changes in tumor metabolism not only ensure an effective energy supply and generation of building blocks for tumor growth but also contribute to inhibition of the antitumor response. Immunosuppression in the tumor microenvironment is often based on the mutual metabolic requirements of immune cells and tumor cells. Cytotoxic T and NK cell activation leads to an increased demand for glucose and amino acids, a well-known feature shown by tumor cells. These close metabolic interdependencies result in metabolic competition, limiting the proliferation, and effector functions of tumor-specific immune cells. Moreover, not only nutrient restriction but also tumor-driven shifts in metabolite abundance and accumulation of metabolic waste products (e.g., lactate) lead to local immunosuppression, thereby facilitating tumor progression and metastasis. In this review, we describe the metabolic interplay between immune cells and tumor cells and discuss tumor cell metabolism as a target structure for cancer therapy. Metabolic (re)education of tumor cells is not only an approach to kill tumor cells directly but could overcome metabolic immunosuppression in the tumor microenvironment and thereby facilitate immunotherapy.
PLOS ONE | 2013
Eva Gottfried; Sven A. Lang; Kathrin Renner; Anja K. Bosserhoff; Wolfram Gronwald; Michael Rehli; Sabine Einhell; Isabel Gedig; Katrin Singer; Anton Seilbeck; Andreas Mackensen; Oliver Grauer; Peter Hau; Katja Dettmer; Reinhard Andreesen; Peter J. Oefner; Marina Kreutz
Non-steroidal anti-inflammatory drugs such as diclofenac exhibit potent anticancer effects. Up to now these effects were mainly attributed to its classical role as COX-inhibitor. Here we show novel COX-independent effects of diclofenac. Diclofenac significantly diminished MYC expression and modulated glucose metabolism resulting in impaired melanoma, leukemia, and carcinoma cell line proliferation in vitro and reduced melanoma growth in vivo. In contrast, the non-selective COX inhibitor aspirin and the COX-2 specific inhibitor NS-398 had no effect on MYC expression and glucose metabolism. Diclofenac significantly decreased glucose transporter 1 (GLUT1), lactate dehydrogenase A (LDHA), and monocarboxylate transporter 1 (MCT1) gene expression in line with a decrease in glucose uptake and lactate secretion. A significant intracellular accumulation of lactate by diclofenac preceded the observed effect on gene expression, suggesting a direct inhibitory effect of diclofenac on lactate efflux. While intracellular lactate accumulation impairs cellular proliferation and gene expression, it does not inhibit MYC expression as evidenced by the lack of MYC regulation by the MCT inhibitor α-cyano-4-hydroxycinnamic acid. Finally, in a cell line with a tetracycline-regulated c-MYC gene, diclofenac decreased proliferation both in the presence and absence of c-MYC. Thus, diclofenac targets tumor cell proliferation via two mechanisms, that is inhibition of MYC and lactate transport. Based on these results, diclofenac holds potential as a clinically applicable MYC and glycolysis inhibitor supporting established tumor therapies.
Molecular Biology Reports | 2002
Eveline Hütter; Kathrin Renner; Pidder Jansen-Dürr; Erich Gnaiger
Oxygen kinetics in fibroblasts was biphasic. This was quantitatively explained by a major mitochondrial hyperbolic component in the low-oxygen range and a linear increase of rotenone-and antimycin A-inhibited oxygen consumption in the high-oxygen range. This suggests an increased production of reactive oxygen species and oxidative stress at elevated, air-level oxygen concentrations. The high oxygen affinity of mitochondrial respiration provides the basis for the maintenance of a high aerobic scope at physiological low-oxygen levels, whereas further pronounced depression of oxygen pressure induces energetic stress under hypoxia.