Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kathrin Riedel is active.

Publication


Featured researches published by Kathrin Riedel.


The EMBO Journal | 2003

Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors

Morten Hentzer; Hong Wu; Jens Bo Andersen; Kathrin Riedel; Thomas Bovbjerg Rasmussen; Niels Bagge; Naresh Kumar; Mark A. Schembri; Zhijun Song; Peter Kristoffersen; Mike Manefield; John William Costerton; Søren Molin; Leo Eberl; Peter D. Steinberg; Staffan Kjelleberg; Niels Høiby; Michael Givskov

Traditional treatment of infectious diseases is based on compounds that kill or inhibit growth of bacteria. A major concern with this approach is the frequent development of resistance to antibiotics. The discovery of communication systems (quorum sensing systems) regulating bacterial virulence has afforded a novel opportunity to control infectious bacteria without interfering with growth. Compounds that can override communication signals have been found in the marine environment. Using Pseudomonas aeruginosa PAO1 as an example of an opportunistic human pathogen, we show that a synthetic derivate of natural furanone compounds can act as a potent antagonist of bacterial quorum sensing. We employed GeneChip® microarray technology to identify furanone target genes and to map the quorum sensing regulon. The transcriptome analysis showed that the furanone drug specifically targeted quorum sensing systems and inhibited virulence factor expression. Application of the drug to P.aeruginosa biofilms increased bacterial susceptibility to tobramycin and SDS. In a mouse pulmonary infection model, the drug inhibited quorum sensing of the infecting bacteria and promoted their clearance by the mouse immune response.


Microbiology | 2002

Inhibition of quorum sensing in Pseudomonas aeruginosa biofilm bacteria by a halogenated furanone compound

Morten Hentzer; Kathrin Riedel; Thomas Bovbjerg Rasmussen; Arne Heydorn; Jens Bo Andersen; Matthew R. Parsek; Scott A. Rice; Leo Eberl; Søren Molin; Niels Høiby; Staffan Kjelleberg; Michael Givskov

Novel molecular tools have been constructed which allow for in situ detection of N-acyl homoserine lactone (AHL)-mediated quorum sensing in Pseudomonas aeruginosa biofilms. The reporter responds to AHL activation of LasR by expression of an unstable version of the green-fluorescent protein (Gfp). Gfp-based reporter technology has been applied for non-destructive, single-cell-level detection of quorum sensing in laboratory-based P. aeruginosa biofilms. It is reported that a synthetic halogenated furanone compound, which is a derivative of the secondary metabolites produced by the Australian macroalga Delisea pulchra, is capable of interfering with AHL-mediated quorum sensing in P. aeruginosa. It is demonstrated that the furanone compound specifically represses expression of a PlasB-gfp reporter fusion without affecting growth or protein synthesis. In addition, it reduces the production of important virulence factors, indicating a general effect on target genes of the las quorum sensing circuit. The furanone was applied to P. aeruginosa biofilms established in biofilm flow chambers. The Gfp-based analysis reveals that the compound penetrates microcolonies and blocks cell signalling and quorum sensing in most biofilm cells. The compound did not affect initial attachment to the abiotic substratum. It does, however, affect the architecture of the biofilm and enhances the process of bacterial detachment, leading to a loss of bacterial biomass from the substratum.


Microbiology | 2001

The cep quorum-sensing system of Burkholderia cepacia H111 controls biofilm formation and swarming motility

Birgit Huber; Kathrin Riedel; Morten Hentzer; Arne Heydorn; Astrid Gotschlich; Michael Givskov; Søren Molin; Leo Eberl

Burkholderia cepacia and Pseudomonas aeruginosa often co-exist as mixed biofilms in the lungs of patients suffering from cystic fibrosis (CF). Here, the isolation of random mini-Tn5 insertion mutants of B. cepacia H111 defective in biofilm formation on an abiotic surface is reported. It is demonstrated that one of these mutants no longer produces N-acylhomoserine lactones (AHLs) due to an inactivation of the cepR gene. cepR and the cepI AHL synthase gene together constitute the cep quorum-sensing system of B. cepacia. By using a gene replacement method, two defined mutants, H111-I and H111-R, were constructed in which cepI and cepR, respectively, had been inactivated. These mutants were used to demonstrate that biofilm formation by B. cepacia H111 requires a functional cep quorum-sensing system. A detailed quantitative analysis of the biofilm structures formed by wild-type and mutant strains suggested that the quorum-sensing system is not involved in the regulation of initial cell attachment, but rather controls the maturation of the biofilm. Furthermore, it is shown that B. cepacia is capable of swarming motility, a form of surface translocation utilized by various bacteria to rapidly colonize appropriate substrata. Evidence is provided that swarming motility of B. cepacia is quorum-sensing-regulated, possibly through the control of biosurfactant production. Complementation of the cepR mutant H111-R with different biosurfactants restored swarming motility while biofilm formation was not significantly increased. This result suggests that swarming motility per se is not essential for biofilm formation on abiotic surfaces.


Microbiology | 2001

N-Acylhomoserine-lactone-mediated communication between pseudomonas aeruginosa and Burkholderia cepacia in mixed biofilms

Kathrin Riedel; Morten Hentzer; Otto Geisenberger; Birgit Huber; Anette Steidle; Hong Wu; Niels Høiby; Michael Givskov; Søren Molin; Leo Eberl

Pseudomonas aeruginosa and Burkholderia cepacia are capable of forming mixed biofilms in the lungs of cystic fibrosis patients. Both bacteria employ quorum-sensing systems, which rely on N-acylhomoserine lactone (AHL) signal molecules, to co-ordinate expression of virulence factors with the formation of biofilms. As both bacteria utilize the same class of signal molecules the authors investigated whether communication between the species occurs. To address this issue, novel Gfp-based biosensors for non-destructive, in situ detection of AHLs were constructed and characterized. These sensors were used to visualize AHL-mediated communication in mixed biofilms, which were cultivated either in artificial flow chambers or in alginate beads in mouse lung tissue. In both model systems B. cepacia was capable of perceiving the AHL signals produced by P. aeruginosa, while the latter strain did not respond to the molecules produced by B. cepacia. Measurements of extracellular proteolytic activities of defined quorum-sensing mutants grown in media complemented with AHL extracts prepared from culture supernatants of various wild-type and mutant strains supported the view of unidirectional signalling between the two strains.


Science | 2010

Peptidomimetic Antibiotics Target Outer-Membrane Biogenesis in Pseudomonas aeruginosa

Nityakalyani Srinivas; Peter Jetter; Bernhard J. Ueberbacher; Martina Werneburg; Katja Zerbe; Jessica Steinmann; Benjamin Van der Meijden; Francesca Bernardini; Alexander Lederer; Ricardo L. A. Dias; Pauline Misson; Heiko Henze; Jürg Zumbrunn; Frank Gombert; Daniel Obrecht; Peter Hunziker; Stefan Schauer; Urs Ziegler; Andres Käch; Leo Eberl; Kathrin Riedel; Steven J. Demarco; John A. Robinson

Killing Pseudomonas Gram-negative Pseudomonas bacteria are opportunistic pathogens, and drug-resistant strains present a serious health problem. Srinivas et al. (p. 1010) synthesized a family of peptidomimetic antibiotics that is active only against Pseudomonas. These antibiotics do not lyse the cell membrane, but instead target an essential outer membrane protein, LptD, which plays a role in the assembly of lipopolysaccharide in the outer cell membrane. Activity in a mouse infection model suggests that the antibiotics might have therapeutic potential. In addition, LptD is widely distributed in gram-negative bacteria and so its validation as a target has the potential to drive development of antibiotics with a broader spectrum of activity against gram-negative pathogens. A synthesized antibiotic targets a protein involved in outer-membrane biogenesis to selectively kill Pseudomonas pathogens. Antibiotics with new mechanisms of action are urgently required to combat the growing health threat posed by resistant pathogenic microorganisms. We synthesized a family of peptidomimetic antibiotics based on the antimicrobial peptide protegrin I. Several rounds of optimization gave a lead compound that was active in the nanomolar range against Gram-negative Pseudomonas spp., but was largely inactive against other Gram-negative and Gram-positive bacteria. Biochemical and genetic studies showed that the peptidomimetics had a non–membrane-lytic mechanism of action and identified a homolog of the β-barrel protein LptD (Imp/OstA), which functions in outer-membrane biogenesis, as a cellular target. The peptidomimetic showed potent antimicrobial activity in a mouse septicemia infection model. Drug-resistant strains of Pseudomonas are a serious health problem, so this family of antibiotics may have important therapeutic applications.


The ISME Journal | 2012

Who is who in litter decomposition? Metaproteomics reveals major microbial players and their biogeochemical functions

Thomas Schneider; Katharina M. Keiblinger; Emanuel Schmid; Katja Sterflinger-Gleixner; Günther Ellersdorfer; Bernd Roschitzki; Andreas Richter; Leo Eberl; Sophie Zechmeister-Boltenstern; Kathrin Riedel

Leaf-litter decomposition is a central process in carbon cycling; however, our knowledge about the microbial regulation of this process is still scarce. Metaproteomics allows us to link the abundance and activity of enzymes during nutrient cycling to their phylogenetic origin based on proteins, the ‘active building blocks’ in the system. Moreover, we employed metaproteomics to investigate the influence of environmental factors and nutrients on the decomposer structure and function during beech litter decomposition. Litter was collected at forest sites in Austria with different litter nutrient content. Proteins were analyzed by 1-D-SDS-PAGE followed by liquid-chromatography and tandem mass-spectrometry. Mass spectra were assigned to phylogenetic and functional groups by a newly developed bioinformatics workflow, assignments being validated by complementary approaches. We provide evidence that the litter nutrient content and the stoichiometry of C:N:P affect the decomposer community structure and activity. Fungi were found to be the main producers of extracellular hydrolytic enzymes, with no bacterial hydrolases being detected by our metaproteomics approach. Detailed investigation of microbial succession suggests that it is influenced by litter nutrient content. Microbial activity was stimulated at higher litter nutrient contents via a higher abundance and activity of extracellular enzymes.


Applied and Environmental Microbiology | 2001

Visualization of N-Acylhomoserine Lactone-Mediated Cell-Cell Communication between Bacteria Colonizing the Tomato Rhizosphere

Anette Steidle; Katja Sigl; Regina Schuhegger; Alexandra Ihring; Markus Schmid; Stephan Gantner; Marion Stoffels; Kathrin Riedel; Michael Givskov; Anton Hartmann; Christian Langebartels; Leo Eberl

ABSTRACT Given that a large proportion of the bacteria colonizing the roots of plants is capable of producingN-acyl-l-homoserine lactone (AHL) molecules, it appears likely that these bacterial pheromones may serve as signals for communication between cells of different species. In this study, we have developed and characterized novel Gfp-based monitor strains that allow in situ visualization of AHL-mediated communication between individual cells in the plant rhizosphere. For this purpose, three Gfp-based AHL sensor plasmids that respond to different spectra of AHL molecules were transferred into AHL-negative derivatives ofPseudomonasputida IsoF andSerratialiquefaciens MG1, two strains that are capable of colonizing tomato roots. These AHL monitor strains were used to visualize communication between defined bacterial populations in the rhizosphere of axenically grown tomato plants. Furthermore, we integrated into the chromosome of AHL-negativeP. putida strain F117 an AHL sensor cassette that responds to the presence of long-chain AHLs with the expression of Gfp. This monitor strain was used to demonstrate that the indigenous bacterial community colonizing the roots of tomato plants growing in nonsterile soil produces AHL molecules. The results strongly support the view that AHL signal molecules serve as a universal language for communication between the different bacterial populations of the rhizosphere consortium.


Journal of Bacteriology | 2006

Two GacA-Dependent Small RNAs Modulate the Quorum-Sensing Response in Pseudomonas aeruginosa

Elisabeth Kay; Bérénice Humair; Valérie Dénervaud; Kathrin Riedel; Stéphanie Spahr; Leo Eberl; Claudio Valverde; Dieter Haas

In Pseudomonas aeruginosa, the GacS/GacA two-component system positively controls the quorum-sensing machinery and the expression of extracellular products via two small regulatory RNAs, RsmY and RsmZ. An rsmY rsmZ double mutant and a gacA mutant were similarly impaired in the synthesis of the quorum-sensing signal N-butanoyl-homoserine lactone, the disulfide bond-forming enzyme DsbA, and the exoproducts hydrogen cyanide, pyocyanin, elastase, chitinase (ChiC), and chitin-binding protein (CbpD). Both mutants showed increased swarming ability, azurin release, and early biofilm development.


Molecular Microbiology | 2002

Genetic analysis of functions involved in the late stages of biofilm development in Burkholderia cepacia H111

Birgit Huber; Kathrin Riedel; Manuela Köthe; Michael Givskov; Søren Molin; Leo Eberl

Burkholderia cepacia and Pseudomonas aeruginosa often co‐exist as mixed biofilms in the lungs of patients suffering from cystic fibrosis (CF). Here, we report the isolation of 13 random mini‐Tn 5 insertion mutants of B. cepacia H111 that are defective in biofilm formation on a polystyrene surface. We show that the screening procedure used in this study is biased towards mutants defective in the late stages of biofilm development. A detailed quantitative analysis of the biofilm structures formed by wild‐type and mutant strains revealed that the isolated mutants are impaired in their abilities to develop a typical three‐dimensional biofilm structure. Molecular investigations showed that the genes required for biofilm maturation fall into several classes: (i) genes encoding for surface proteins; (ii) genes involved in the biogenesis and maintenance of an integral outer membrane; and (iii) genes encoding regulatory factors. It is shown that three of the regulatory mutants produce greatly reduced amounts of N ‐octanoylhomoserine lactone (C8‐HSL). This compound serves as the major signal molecule of the cep quorum‐sensing system. As this density‐dependent regulatory system is involved in the regulation of biofilm maturation, we investigated the interplay between the three regulatory genes and the quorum‐sensing cascade. The results of these investigations show that the identified genes encode for regulatory elements that are positioned upstream of the cep system, indicating that the quorum‐sensing system of B. cepacia is a major checkpoint for biofilm formation.


Applied and Environmental Microbiology | 2002

Identification and characterization of an N-acylhomoserine lactone-dependent quorum-sensing system in Pseudomonas putida strain IsoF

Anette Steidle; Marie Allesen‐Holm; Kathrin Riedel; Gabriele Berg; Michael Givskov; Søren Molin; Leo Eberl

ABSTRACT Recent reports have shown that several strains of Pseudomonas putida produce N-acylhomoserine lactones (AHLs). These signal molecules enable bacteria to coordinately express certain phenotypic traits in a density-dependent manner in a process referred to as quorum sensing. In this study we have cloned a genomic region of the plant growth-promoting P. putida strain IsoF that, when present in trans, provoked induction of a bioluminescent AHL reporter plasmid. Sequence analysis identified a gene cluster consisting of four genes: ppuI and ppuR, whose predicted amino acid sequences are highly similar to proteins of the LuxI-LuxR family, an open reading frame (ORF) located in the intergenic region between ppuI and ppuR with significant homology to rsaL from Pseudomonas aeruginosa, and a gene, designated ppuA, present upstream of ppuR, the deduced amino acid sequence of which shows similarity to long-chain fatty acid coenzyme A ligases from various organisms. Using a transcriptional ppuA::luxAB fusion we demonstrate that expression of ppuA is AHL dependent. Furthermore, transcription of the AHL synthase ppuI is shown to be subject to quorum-sensing regulation, creating a positive feedback loop. Sequencing of the DNA regions flanking the ppu gene cluster indicated that the four genes form an island in the suhB-PA3819 intergenic region of the currently sequenced P. putida strain KT2440. Moreover, we provide evidence that the ppu genes are not present in other AHL-producing P. putida strains, indicating that this gene cluster is so far unique for strain IsoF. While the wild-type strain formed very homogenous biofilms, both a ppuI and a ppuA mutant formed structured biofilms with characteristic microcolonies and water-filled channels. These results suggest that the quorum-sensing system influences biofilm structural development.

Collaboration


Dive into the Kathrin Riedel's collaboration.

Top Co-Authors

Avatar

Leo Eberl

Technische Universität München

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Søren Molin

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Morten Hentzer

Technical University of Denmark

View shared research outputs
Researchain Logo
Decentralizing Knowledge