Kathrin Wuttig
Cooperative Research Centre
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kathrin Wuttig.
Environmental Science & Technology | 2013
Kathrin Wuttig; Maija Heller; Peter Croot
Superoxide (O2(-): IUPAC name dioxide (•1-)) is an important transient reactive oxygen species (ROS) in the ocean formed as an intermediate in the redox transformation of oxygen (O2) into hydrogen peroxide (H2O2) and vice versa. This highly reactive and very short-lived radical anion can be produced both via photochemical and biological processes in the ocean. In this paper we examine the decomposition rate of O2(-) throughout the water column, using new data collected in the Eastern Tropical North Atlantic (ETNA) Ocean. For this approach we applied a semi factorial experimental design to identify and quantify the pathways of the major identified sinks in the ocean. In this work we occupied six stations, two on the West African continental shelf and four open ocean stations, including the CVOO time series site adjacent to Cape Verde. Our results indicate that, in the surface ocean impacted by Saharan aerosols and coastal sediment resuspension, the main decay pathways for superoxide are via reactions with Mn(II) and organic matter.
Environmental Science & Technology | 2013
Kathrin Wuttig; Maija Heller; Peter Croot
Manganese (Mn) is a required element for oceanic phytoplankton as it plays a critical role in photosynthesis, through its unique redox chemistry, as the active site in photosystem II, and in enzymes that act as defenses against reactive oxygen species (ROS), most notably for protection against superoxide (O2(-)), through the action of superoxide dismutase (SOD), and against hydrogen peroxide (H2O2) via peroxidases and catalases. The distribution and redox speciation of Mn in the ocean is also apparently controlled by reactions with ROS. Here we examine the connections between ROS and dissolved Mn species in the upper ocean using field and laboratory experimental data. Our results suggest it is unlikely that significant concentrations of Mn(III) are produced in the euphotic zone, as in the absence of evidence for the existence of strong Mn(III) ligands, Mn(II) reacts with O2(-) to form the short-lived transient manganous superoxide, MnO2(+), which may react rapidly with other redox species in a manner similar to O2(-). Experiments with the strong Mn(III) chelator, desferrioxamine B (DFB), in seawater indicated that the Mn(III) species are unlikely to form, as formation of the precursor Mn(II) complex is hindered due to the stability of the Ca complex with DFB.
Frontiers in Marine Science | 2016
Maija Heller; Kathrin Wuttig; Peter Croot
Superoxide (O2-) is a short lived reactive oxygen species (ROS) formed in seawater by photochemical or biological sources, it is important in the redox cycling of trace elements and organic matter in the ocean. The photoproduction of O2- is now thought to involve reactions between O2 and reactive reducing (radical) intermediates formed from dissolved organic matter (DOM) via intramolecular reactions between excited singlet state donors and ground-state acceptors (Zhang et al., 2012). In seawater the main pathways identified for the decomposition of O2- into H2O2 and O2, involve reactions with Cu, Mn and DOM. In productive regions of the ocean, the reaction between DOM and O2- can be a significant sink for O2-. Thus DOM is a key component of both the formation and decomposition of O2- and formation of H2O2. In the present work we examined the relationships between O2- decay rates and parameters associated with chromophoric dissolved organic matter (CDOM) and fluorescent dissolved organic matter (FDOM) by using the thermal O2- source SOTS-1. Filtered samples (0.2 µm) were run both in the presence, and absence, of the metal chelator diethylenetriaminepentaacetic acid (DTPA) to determine the contribution from DOM. Samples were collected along a transect across the continental shelf of the Mauritanian continental shelf during a period of upwelling. In this region we found that reactions with DOM, are a significant sink for O2- in the Mauritanian Upwelling, constituting on average 58 ± 13 % of the O2- loss rates. Superoxide reactivity with organic matter showed no clear correlation with bulk CDOM or FDOM properties (as assessed by PARAFAC analysis) suggesting that future work should concentrate at the functional group level to clearly elucidate which molecular species are involved as bulk properties represent a wide spread of chemical moieties with different O2- reactivities. Analysis of FDOM parameters indicates that many of the markers used previously for terrestrial sources of DOM and FDOM are called into question as marine sources exist. In particular recent work (Rico et al., 2013) indicates that algal species may also produce syringic, vanillic and cinnamic acids, which had previously been ascribed solely to terrestrial vegetation.
Croot, Peter, Heller, Maija, Schlosser, Christian and Wuttig, Kathrin (2011) Utilizing Radioisotopes for Trace Metal Speciation Measurements in Seawater Radioisotopes - Applications in Physical Sciences. InTech, Rijeka, Croatia, pp. 247-278. ISBN 978-953-307-510-5 | 2011
Peter Croot; Maija Heller; Christian Schlosser; Kathrin Wuttig
The chemical speciation of trace metals in seawater is of critical importance to studies in marine biogeochemistry; as such information is essential for interpreting and understanding the chemical reactivity of trace metals in the environment.
Global Biogeochemical Cycles | 2018
Michael J. Ellwood; Andrew R. Bowie; Alex R. Baker; Melanie Gault-Ringold; Christel S. Hassler; Cliff S. Law; William A. Maher; Andrew Marriner; Scott D. Nodder; Sylvia G. Sander; Craig L. Stevens; Ashley T. Townsend; Pier van der Merwe; E. Malcolm S. Woodward; Kathrin Wuttig; Philip W. Boyd
Iron, phosphate and nitrate are essential nutrients for phytoplankton growth and hence their supply into the surface ocean controls oceanic primary production. Here, we present a GEOTRACES zonal section (GP13; 30-33oS, 153oE-150oW) extending eastwards from Australia to the oligotrophic South Pacific Ocean gyre outlining the concentrations of these key nutrients. Surface dissolved iron concentrations are elevated at >0.4 nmol L-1 near continental Australia (west of 165°E) and decreased eastward to ≤0.2 nmol L-1 (170oW-150oW). The supply of dissolved iron into the upper ocean (<100m) from the atmosphere and vertical diffusivity averaged 11 ±10 nmol m-2 d-1. In the remote South Pacific Ocean (170oW-150oW) atmospherically sourced iron is a significant contributor to the surface dissolved iron pool with average supply contribution of 23 ± 17% (range 3% to 55%). Surface-water nitrate concentrations averaged 5 ±4 nmol L-1 between 170oW and 150oW whilst surface-water phosphate concentrations averaged 58 ±30 nmol L-1. The supply of nitrogen into the upper ocean is primarily from deeper waters (24-1647 μmol m-2 d-1) with atmospheric deposition and nitrogen fixation contributing <1% to the overall flux, in remote South Pacific waters. The deep water N:P ratio averaged 16 ±3 but declined to <1 above the deep chlorophyll maximum (DCM) indicating a high N:P assimilation ratio by phytoplankton leading to almost quantitative removal of nitrate. The supply stoichiometry for iron and nitrogen relative to phosphate at and above the DCM declines eastward leading to two biogeographical provinces: one with diazotroph production and the other without diazotroph production.
Journal of Geophysical Research | 2018
Christina Schallenberg; Sophie Bestley; Andreas Klocker; Thomas W. Trull; Diana M. Davies; Melanie Gault‐Ringold; Ruth Eriksen; Nicholas P. Roden; Sylvia G. Sander; Michael D. Sumner; Ashley T. Townsend; Pier van der Merwe; Karen J. Westwood; Kathrin Wuttig; Andrew R. Bowie
Although the supply of iron generally limits phytoplankton productivity in the Southern Ocean, substantial seasonal blooms are observed over and downstream of the Kerguelen plateau in the Indian sector of the Southern Ocean. Surprisingly, of the oceanic blooms, those associated with the deeper southern plateau last much longer (~3 months) than the northern bloom (~1‐month downstream of northern plateau). In this study, iron supply mechanisms around the southern plateau were investigated, obtaining profiles of dissolved iron (<0.2 μm, dFe) to 2,000‐m deep at 25 stations during austral summer 2016. The dFe concentrations in surface waters (≤100‐m depth) ranged from below the detection limit (DL, median of 0.026 nmol/kg) to 0.34 nmol/kg near the Antarctic shelf, with almost half the data points below detection. These low and—with few exceptions—largely spatially invariant concentrations, presumably driven by seasonal drawdown of this essential micronutrient by phytoplankton, could not explain observed patterns in chlorophyll a. In contrast, dFe concentrations (0.05–1.27 nmol/kg) in subsurface waters (100–800 m) showed strong spatial variations that can explain bloom patterns around the southern Kerguelen plateau when considered in the context of frontal locations and associated frontal processes, including upwelling, that may increase the upward supply of dFe in the region. This sustained vertical dFe supply distinguishes the southern blooms from the bloom downstream of the northern Kerguelen plateau and explains their persistence through the season.
Meteor-Berichte, M80/1 . Leitstelle Deutsche Forschungsschiffe, Inst. f. Meereskunde, Hamburg, Germany, 49 pp. | 2011
Peter Brandt; D. Brownell; Marcus Dengler; Sven-Helge Didwischus; Sandra Fehsenfeld; Sebastian Fessler; Jürgen Fischer; Andreas Funk; Tobias Großkopf; Johannes Hahn; H. Halm; Verena Hormann; Uwe Koy; Gerd Krahmann; A. Krupke; V. Melo; Mario Müller; Gerd Niehus; Uwe Papenburg; Andreas Pinck; Anke Schneider; Tobias Steinhoff; Tim Stöven; T. Truscheit; N. Viera; H. von Neuhoff; Thibaut Wagener; Kathrin Wuttig; Rainer J. Zantopp
METEOR cruise 80/1 was a contribution to the SFB 754 “Climate-Biogeochemistry Interactions in the Tropical Ocean”. Shipboard, glider and moored observations are used to study the temporal and spatial variability of physical and biogeochemical parameters within the oxygen minimum zone (OMZ) of the tropical North Atlantic. As part of the BMBF “Nordatlantik” project, it further focuses on the equatorial current system including the Equatorial Undercurrent (EUC) and intermediate currents below. During the cruise, hydrographic station observations were performed using a CTD/O2 rosette, including water sampling for salinity, oxygen, nutrients and other biogeochemical tracers. Underway current measurements were successfully carried out with the 75 kHz ADCP borrowed from R/V POSEIDON during the first part of the cruise, and R/V METEOR’s 38 kHz ADCP during the second part. During M80/1, an intensive mooring program was carried out with 8 mooring recoveries and 8 mooring deployments. Right at the beginning of the cruise, a multidisciplinary mooring near the Cape Verde Islands was recovered and redeployed. Within the framework of SFB 754, two moorings with CTD/O2 profilers were recovered and redeployed with other instrumentation in the center and at the southern rim of the OMZ of the tropical North Atlantic. The equatorial mooring array as part of BMBF “North Atlantic” project consists of 5 current meter moorings along 23°W between 2°S and 2°N. It is aimed at quantifying the variability of the thermocline water supply toward the equatorial cold tongue which develops east of 10°W during boreal summer. Several glider missions were performed during the cruise. One glider was recovered that was deployed two months earlier. Another glider was deployed for two short term missions, near the equator for about 8 days and near 8°N for one day. This glider was equipped with a new microstructure probe in addition to standard sensors, i.e. CTD/O2, chlorophyll and turbidity.
Biogeosciences | 2012
Kathrin Wuttig; Thibaut Wagener; Matthieu Bressac; Anna Dammshäuser; Peter Streu; Cécile Guieu; Peter Croot
Aquatic Biology | 2010
Katrin Bluhm; Peter Croot; Kathrin Wuttig; Karin Lochte
Geochimica et Cosmochimica Acta | 2015
Fanny Chever; Olivier J. Rouxel; Peter Croot; Emmanuel Ponzevera; Kathrin Wuttig; Maureen E. Auro