Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kathryn A. Higley is active.

Publication


Featured researches published by Kathryn A. Higley.


Journal of Environmental Radioactivity | 2013

The IAEA handbook on radionuclide transfer to wildlife

B.J. Howard; N.A. Beresford; David Copplestone; D. Telleria; G. Proehl; Ross Jeffree; T. Yankovich; J.E. Brown; Kathryn A. Higley; Mathew P. Johansen; H. Mulye; Hildegarde Vandenhove; S. Gashchak; Michael D. Wood; Hyoe Takata; P. Andersson; Paul Dale; J. Ryan; A. Bollhöfer; C. Doering; C.L. Barnett; C. Wells

An IAEA handbook presenting transfer parameter values for wildlife has recently been produced. Concentration ratios (CRwo-media) between the whole organism (fresh weight) and either soil (dry weight) or water were collated for a range of wildlife groups (classified taxonomically and by feeding strategy) in terrestrial, freshwater, marine and brackish generic ecosystems. The data have been compiled in an on line database, which will continue to be updated in the future providing the basis for subsequent revision of the Wildlife TRS values. An overview of the compilation and analysis, and discussion of the extent and limitations of the data is presented. Example comparisons of the CRwo-media values are given for polonium across all wildlife groups and ecosystems and for molluscs for all radionuclides. The CRwo-media values have also been compared with those currently used in the ERICA Tool which represented the most complete published database for wildlife transfer values prior to this work. The use of CRwo-media values is a pragmatic approach to predicting radionuclide activity concentrations in wildlife and is similar to that used for screening assessments for the human food chain. The CRwo-media values are most suitable for a screening application where there are several conservative assumptions built into the models which will, to varying extents, compensate for the variable data quality and quantity, and associated uncertainty.


Journal of Environmental Radioactivity | 2003

A kinetic-allometric approach to predicting tissue radionuclide concentrations for biota

Kathryn A. Higley; Stephen L. Domotor; Ernest J. Antonio

Allometry, or the biology of scaling, is the study of size and its consequences. It has become a useful tool for comparative physiology. There are several allometric equations that relate body size to many parameters, including ingestion rate, lifespan, inhalation rate, home range and more. While these equations were originally derived from empirical observations, there is a growing body of evidence that these relationships have their origins in the dynamics of energy transport mechanisms. As part of an ongoing effort by the Department of Energy in developing generic methods for evaluating radiation dose to biota, we have examined the utility of applying allometric techniques to predicting radionuclide tissue concentration across a large range of terrestrial and riparian species of animals. This particular study examined 23 radionuclides. Initial investigations suggest that the allometric approach can provide a useful tool to derive limiting values of uptake and elimination factors for animals.


Journal of Environmental Radioactivity | 2003

Derivation of a screening methodology for evaluating radiation dose to aquatic and terrestrial biota.

Kathryn A. Higley; Stephen L. Domotor; Ernest J. Antonio; David C. Kocher

The United States Department of Energy (DOE) currently has in place a radiation dose standard for the protection of aquatic animals, and is considering additional dose standards for terrestrial biota. These standards are: 10 mGy/d for aquatic animals, 10 mGy/d for terrestrial plants, and, 1 mGy/d for terrestrial animals. Guidance on suitable approaches to the implementation of these standards is needed. A screening methodology, developed through DOEs Biota Dose Assessment Committee (BDAC), serves as the principal element of DOEs graded approach for evaluating radiation doses to aquatic and terrestrial biota. Limiting concentrations of radionuclides in water, soil, and sediment were derived for 23 radionuclides. Four organism types (aquatic animals; riparian animals; terrestrial animals; and terrestrial plants) were selected as the basis for development of the screening method. Internal doses for each organism type were calculated as the product of contaminant concentration, bioaccumulation factor(s) and dose conversion factors. External doses were calculated based on the assumption of immersion of the organism in soil, sediment, or water. The assumptions and default parameters used provide for conservative screening values. The screening methodology within DOEs graded approach should prove useful in demonstrating compliance with biota dose limits and for conducting screening assessments of radioecological impact. It provides a needed evaluation tool that can be employed within a framework for protection of the environment.


Journal of Environmental Radioactivity | 2003

Principles and issues in radiological ecological risk assessment

Daniel Jones; Stephen L. Domotor; Kathryn A. Higley; David C. Kocher; Gordon R. Bilyard

This paper provides a bridge between the fields of ecological risk assessment (ERA) and radioecology by presenting key biota dose assessment issues identified in the US Department of Energys Graded Approach for Evaluating Radiation Doses to Aquatic and Terrestrial Biota in a manner consistent with the US Environmental Protection Agencys framework for ERA. Current radiological ERA methods and data are intended for use in protecting natural populations of biota, rather than individual members of a population. Potentially susceptible receptors include vertebrates and terrestrial plants. One must ensure that all media, radionuclides (including short-lived radioactive decay products), types of radiations (i.e., alpha particles, electrons, and photons), and pathways (i.e., internal and external contamination) are combined in each exposure scenario. The relative biological effectiveness of alpha particles with respect to deterministic effects must also be considered. Expected safe levels of exposure are available for the protection of natural populations of aquatic biota (10 mGy d(-1)) and terrestrial plants (10 mGy d(-1)) and animals (1 mGy d(-1)) and are appropriate for use in all radiological ERA tiers, provided that appropriate exposure assumptions are used. Caution must be exercised (and a thorough justification provided) if more restrictive limits are selected, to ensure that the supporting data are of high quality, reproducible, and clearly relevant to the protection of natural populations.


Environmental Science & Technology | 2015

Radiological Dose Rates to Marine Fish from the Fukushima Daiichi Accident: The First Three Years Across the North Pacific

Mathew P. Johansen; Elizabeth Ruedig; Keiko Tagami; Shigeo Uchida; Kathryn A. Higley; N.A. Beresford

A more complete record is emerging of radionuclide measurements in fish tissue, sediment, and seawater samples from near the Fukushima Daiichi Nuclear Power Plant (FDNPP) and across the Pacific Ocean. Our analysis of publicly available data indicates the dose rates to the most impacted fish species near the FDNPP (median 1.1 mGy d(-1), 2012-2014 data) have remained above benchmark levels for potential dose effects at least three years longer than was indicated by previous, data-limited evaluations. Dose rates from (134,137)Cs were highest in demersal species with sediment-associated food chains and feeding behaviors. In addition to (134,137)Cs, the radionuclide (90)Sr was estimated to contribute up to approximately one-half of the total 2013 dose rate to fish near the FDNPP. Mesopelagic fish 100-200 km east of the FDNPP, coastal fish in the Aleutian Islands (3300 km), and trans-Pacific migratory species all had increased dose rates as a consequence of the FDNPP accident, but their total dose rates remained dominated by background radionuclides. A hypothetical human consumer of 50 kg of fish, gathered 3 km from the FDNPP in 2013, would have received a total committed effective dose of approximately 0.95 mSv a(-1) from combined FDNPP and ambient radionuclides, of which 0.13 mSv a(-1) (14%) was solely from the FDNPP radionuclides and below the 1 mSv a(-1) benchmark for public exposure.


Journal of Environmental Radioactivity | 2003

A probabilistic approach to obtaining limiting estimates of radionuclide concentration in biota.

Kathryn A. Higley; Stephen L. Domotor; Ernest J. Antonio

The US Department of Energy has developed a graded approach for evaluating radiation doses to biota. Limiting concentrations of radionuclides in water, soil, and sediment were derived for twenty-three radionuclides. Four organism types (aquatic animals, riparian animals, terrestrial animals, and terrestrial plants) were selected as the basis for method development. While environmental transfer data needed for deriving biota tissue concentrations are available for aquatic animals and terrestrial plants, less information is available for terrestrial and riparian organisms. Two methods were applied and examined for their ability to provide estimates of organism:soil or organism:water concentration factors in lieu of measured data. The kinetic/allometric approach combined with a parameter uncertainty analysis provides a needed method to estimate concentration factors across multiple species with limited input data.


Radiation and Environmental Biophysics | 2010

Estimating transfer parameters in the absence of data

Kathryn A. Higley

The calculation of transfer of radionuclides from the abiotic to the biotic environment is a well-established practice in radiological assessments. Concentration ratios provide simple means to estimate radionuclide activity in biota, from measured (or estimated) radionuclide concentrations in either a food source or an abiotic component such as soil or water. They are typically reported by element, and data compilations may include information such as soil type (e.g., sand, loam, clay) and species. The data may be for multiple species at a single location, single species at multiple locations, or represent compilations from multiple sources. Recently published guidance suggests that estimates are best made using data from the same ecosystem. This paper examines this recent guidance, in the context of using measured data from within a single ecosystem and comparing results to more generic values. Results suggest that generic values may be an adequate substitute for site-specific information. It illustrates how ionic potential may be used as an alternative to group chemical properties in estimating transfer factors. Lastly, limited evidence is found to support the concept of allometric scaling functions for elemental concentrations in plants.


Environmental Science & Technology | 2014

Trace Levels of Fukushima Disaster Radionuclides in East Pacific Albacore

Delvan R. Neville; A. Jason Phillips; Richard D. Brodeur; Kathryn A. Higley

The Fukushima Daiichi power station released several radionuclides into the Pacific following the March 2011 earthquake and tsunami. A total of 26 Pacific albacore (Thunnus alalunga) caught off the Pacific Northwest U.S. coast between 2008 and 2012 were analyzed for (137)Cs and Fukushima-attributed (134)Cs. Both 2011 (2 of 2) and several 2012 (10 of 17) edible tissue samples exhibited increased activity concentrations of (137)Cs (234-824 mBq/kg of wet weight) and (134)Cs (18.2-356 mBq/kg of wet weight). The remaining 2012 samples and all pre-Fukushima (2008-2009) samples possessed lower (137)Cs activity concentrations (103-272 mBq/kg of wet weight) with no detectable (134)Cs activity. Age, as indicated by fork length, was a strong predictor for both the presence and concentration of (134)Cs (p < 0.001). Notably, many migration-aged fish did not exhibit any (134)Cs, suggesting that they had not recently migrated near Japan. None of the tested samples would represent a significant change in annual radiation dose if consumed by humans.


Journal of Environmental Radioactivity | 2013

Creation of a voxel phantom of the ICRP reference crab

E.A. Caffrey; Kathryn A. Higley

The International Commission on Radiological Protection (ICRP) has modeled twelve reference animal and plant (RAP) species using simple geometric shapes in Monte-Carlo (MCNP) based simulations. The focus has now shifted to creating voxel phantoms of each RAP in order to estimate doses to biota with a higher degree of confidence. This paper describes the creation of a voxel model of a Dungeness crab from CT images with shell, gills, gonads, hepatopancreas, and heart identified and segmented. Absorbed fractions were tabulated for each organ as a source and target at twelve photon and nine electron energies: 0.01, 0.015, 0.02, 0.03, 0.05, 0.1, 0.2, 0.5, 1.0, 1.5, 2.0, and 4.0 MeV for photons and 0.1, 0.2, 0.4, 0.5, 0.7, 1.0, 1.5, 2.0 and 4.0 MeV for electrons. AFs whose error exceeded 5% are marked with an underline in the data tables; AFs whose error was higher than 10% were excluded, and are shown in the tabulated data as a dashed line. A representative sample of the data is shown in Figs. 3-8; the entire data set is available as an electronic appendix. The results are consistent with previous small organism studies (Kinase, 2008; Stabin et al., 2006), and suggest that AF values are highly dependent on source organ location and mass.


Journal of Environmental Radioactivity | 2015

A comparison of the ellipsoidal and voxelized dosimetric methodologies for internal, heterogeneous radionuclide sources.

Elizabeth Ruedig; N.A. Beresford; Mario Gomez Fernandez; Kathryn A. Higley

Non-human biota dosimetry has historically relied on ellipsoidal dosimetric phantoms. In 2008, the International Commission on Radiological Protection (ICRP) presented a set of ellipsoidal models representative of wildlife, including dosimetric data for homogeneously distributed internal radionuclide sources. Such data makes it possible to quickly and easily estimate radiation dose rate. Voxelized modeling, first developed for use in human medical dosimetry, utilizes advanced imaging technologies to generate realistic and detailed dosimetric phantoms. Individual organs or tissues may be segmented and dosimetric data derived for each anatomic area of interest via Monte Carlo modeling. Recently, dosimetric data derived from voxelized models has become available for organisms similar to the ICRPs Reference Animals and Plants in 2008. However, if the existing ellipsoidal models are conservative, there may be little need to employ voxel models in regulatory assessments. At the same time, existing dosimetric techniques may be inadequate to resolve recent controversies surrounding the impact of ionizing radiation exposure on wildlife. This study quantifies the difference between voxel-calculated and ellipsoid-calculated dose rates for seven radionuclides assumed to be heterogeneously distributed: (14)C, (36)Cl, (60)Co, (90)Sr, (131)I, (134)Cs, (137)Cs, and (210)Po. Generally, the two methodologies agree within a factor of two to three. Finally, this paper compares the assumptions of each dosimetric system, the conditions under which each model best applies, and the implications that our results have for the ongoing dialog surrounding wildlife dosimetry.

Collaboration


Dive into the Kathryn A. Higley's collaboration.

Top Co-Authors

Avatar

Mathew P. Johansen

Australian Nuclear Science and Technology Organisation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stephen L. Domotor

United States Department of Energy

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ernest J. Antonio

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

B.J. Howard

Natural Environment Research Council

View shared research outputs
Top Co-Authors

Avatar

C.L. Barnett

Natural Environment Research Council

View shared research outputs
Researchain Logo
Decentralizing Knowledge