Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kathryn A. Patras is active.

Publication


Featured researches published by Kathryn A. Patras.


Cellular Microbiology | 2013

Group B Streptococcus CovR regulation modulates host immune signalling pathways to promote vaginal colonization

Kathryn A. Patras; Nai Yu Wang; Erin M. Fletcher; Courtney K. Cavaco; Alyssa Jimenez; Mansi Garg; Joshua Fierer; Tamsin R. Sheen; Lakshmi Rajagopal; Kelly S. Doran

Streptococcus agalactiae (Group B Streptococcus, GBS) is a frequent commensal organism of the vaginal tract of healthy women. However, GBS can transition to a pathogen in susceptible hosts, but host and microbial factors that contribute to this conversion are not well understood. GBS CovR/S (CsrR/S) is a two component regulatory system that regulates key virulence elements including adherence and toxin production. We performed global transcription profiling of human vaginal epithelial cells exposed to WT, CovR deficient, and toxin deficient strains, and observed that insufficient regulation by CovR and subsequent increased toxin production results in a drastic increase in host inflammatory responses, particularly in cytokine signalling pathways promoted by IL‐8 and CXCL2. Additionally, we observed that CovR regulation impacts epithelial cell attachment and intracellular invasion. In our mouse model of GBS vaginal colonization, we further demonstrated that CovR regulation promotes vaginal persistence, as infection with a CovR deficient strainresulted in a heightened host immune response as measured by cytokine production and neutrophil activation. Using CXCr2 KO mice, we determined that this immune alteration occurs, at least in part, via signalling through the CXCL2 receptor. Taken together, we conclude that CovR is an important regulator of GBS vaginal colonization and loss of this regulatory function may contribute to the inflammatory havoc seen during the course of infection.


Mucosal Immunology | 2015

Characterization of host immunity during persistent vaginal colonization by Group B Streptococcus.

Kathryn A. Patras; Berenice Rösler; Marilyn L. Thoman; Kelly S. Doran

Streptococcus agalactiae (Group B Streptococcus, GBS) is a Gram-positive bacterium, which colonizes the vaginal tract in 10–30% of women. Colonization is transient in nature, and little is known about the host and bacterial factors controlling GBS persistence. Gaining insight into these factors is essential for developing therapeutics to limit maternal GBS carriage and prevent transmission to the susceptible newborn. In this work, we have used human cervical and vaginal epithelial cells, and our established mouse model of GBS vaginal colonization, to characterize key host factors that respond during GBS colonization. We identify a GBS strain that persists beyond a month in the murine vagina, whereas other strains are more readily cleared. Correspondingly, we have detected differential cytokine production in human cell lines after challenge with the persistent strain vs. other GBS strains. We also demonstrate that the persistent strain more readily invades cervical cells compared with vaginal cells, suggesting that GBS may potentially use the cervix as a reservoir to establish long-term colonization. Furthermore, we have identified interleukin-17 production in response to long-term colonization, which is associated with eventual clearance of GBS. We conclude that both GBS strain differences and concurrent host immune responses are crucial in modulating vaginal colonization.


Mbio | 2014

Analysis of Two-Component Systems in Group B Streptococcus Shows That RgfAC and the Novel FspSR Modulate Virulence and Bacterial Fitness

Cristina Faralla; Matteo M. E. Metruccio; Matteo De Chiara; Rong Mu; Kathryn A. Patras; Alessandro Muzzi; Guido Grandi; Immaculada Margarit; Kelly S. Doran; Robert Janulczyk

ABSTRACT Group B Streptococcus (GBS), in the transition from commensal organisms to pathogens, will encounter diverse host environments and, thus, require coordinated control of the transcriptional responses to these changes. This work was aimed at better understanding the role of two-component signal transduction systems (TCS) in GBS pathophysiology through a systematic screening procedure. We first performed a complete inventory and sensory mechanism classification of all putative GBS TCS by genomic analysis. Five TCS were further investigated by the generation of knockout strains, and in vitro transcriptome analysis identified genes regulated by these systems, ranging from 0.1% to 3% of the genome. Interestingly, two sugar phosphotransferase systems appeared to be differentially regulated in the TCS-16 knockout strain (TCS loci were numbered in order of their appearance on the chromosome), suggesting an involvement in monitoring carbon source availability. High-throughput analysis of bacterial growth on different carbon sources showed that TCS-16 was necessary for the growth of GBS on fructose-6-phosphate. Additional transcriptional analysis provided further evidence for a stimulus-response circuit where extracellular fructose-6-phosphate leads to autoinduction of TCS-16, with concomitant dramatic upregulation of the adjacent operon, which encodes a phosphotransferase system. The TCS-16-deficient strain exhibited decreased persistence in a model of vaginal colonization. All mutant strains were also characterized in a murine model of systemic infection, and inactivation of TCS-17 (also known as RgfAC) resulted in hypervirulence. Our data suggest a role for the previously unknown TCS-16, here named FspSR, in bacterial fitness and carbon metabolism during host colonization, and the data also provide experimental evidence for TCS-17/RgfAC involvement in virulence. IMPORTANCE Two-component systems have been evolved by bacteria to detect environmental changes, and they play key roles in pathogenicity. A comprehensive analysis of TCS in GBS has not been performed previously. In this work, we classify 21 TCS and present evidence for the involvement of two specific TCS in GBS virulence and colonization in vivo. Although pinpointing specific TCS stimuli is notoriously difficult, we used a combination of techniques to identify two systems with different effects on GBS pathogenesis. For one of the systems, we propose that fructose-6-phosphate, a metabolite in glycolysis, is sufficient to induce a regulatory response involving a sugar transport system. Our catalogue and classification of TCS may guide further studies into the role of TCS in GBS pathogenicity and biology. Two-component systems have been evolved by bacteria to detect environmental changes, and they play key roles in pathogenicity. A comprehensive analysis of TCS in GBS has not been performed previously. In this work, we classify 21 TCS and present evidence for the involvement of two specific TCS in GBS virulence and colonization in vivo. Although pinpointing specific TCS stimuli is notoriously difficult, we used a combination of techniques to identify two systems with different effects on GBS pathogenesis. For one of the systems, we propose that fructose-6-phosphate, a metabolite in glycolysis, is sufficient to induce a regulatory response involving a sugar transport system. Our catalogue and classification of TCS may guide further studies into the role of TCS in GBS pathogenicity and biology.


Infection and Immunity | 2015

Streptococcus salivarius K12 Limits Group B Streptococcus Vaginal Colonization

Kathryn A. Patras; Philip A. Wescombe; Berenice Rösler; John D. Hale; John R. Tagg; Kelly S. Doran

ABSTRACT Streptococcus agalactiae (group B streptococcus [GBS]) colonizes the rectovaginal tract in 20% to 30% of women and during pregnancy can be transmitted to the newborn, causing severe invasive disease. Current routine screening and antibiotic prophylaxis have fallen short of complete prevention of GBS transmission, and GBS remains a leading cause of neonatal infection. We have investigated the ability of Streptococcus salivarius, a predominant member of the native human oral microbiota, to control GBS colonization. Comparison of the antibacterial activities of multiple S. salivarius strains by use of a deferred-antagonism test showed that S. salivarius strain K12 exhibited the broadest spectrum of activity against GBS. K12 effectively inhibited all GBS strains tested, including disease-implicated isolates from newborns and colonizing isolates from the vaginal tract of pregnant women. Inhibition was dependent on the presence of megaplasmid pSsal-K12, which encodes the bacteriocins salivaricin A and salivaricin B; however, in coculture experiments, GBS growth was impeded by K12 independently of the megaplasmid. We also demonstrated that K12 adheres to and invades human vaginal epithelial cells at levels comparable to GBS. Inhibitory activity of K12 was examined in vivo using a mouse model of GBS vaginal colonization. Mice colonized with GBS were treated vaginally with K12. K12 administration significantly reduced GBS vaginal colonization in comparison to nontreated controls, and this effect was partially dependent on the K12 megaplasmid. Our results suggest that K12 may have potential as a preventative therapy to control GBS vaginal colonization and thereby prevent its transmission to the neonate during pregnancy.


Antimicrobial Agents and Chemotherapy | 2013

A Novel C5a-Derived Immunobiotic Peptide Reduces Streptococcus agalactiae Colonization through Targeted Bacterial Killing

Courtney K. Cavaco; Kathryn A. Patras; Jaime Zlamal; Marilyn L. Thoman; Edward L. Morgan; Sam D. Sanderson; Kelly S. Doran

ABSTRACT Streptococcus agalactiae (group B Streptococcus [GBS]) is a Gram-positive bacterium that colonizes the cervicovaginal tract in approximately 25% of healthy women. Although colonization is asymptomatic, GBS can be vertically transmitted to newborns peripartum, causing severe disease such as pneumonia and meningitis. Current prophylaxis, consisting of late gestation screening and intrapartum antibiotics, has failed to completely prevent transmission, and GBS remains a leading cause of neonatal sepsis and meningitis in the United States. Lack of an effective vaccine and emerging antibiotic resistance necessitate exploring novel therapeutic strategies. We have employed a host-directed immunomodulatory therapy using a novel peptide, known as EP67, derived from the C-terminal region of human complement component C5a. Previously, we have demonstrated in vivo that EP67 engagement of the C5a receptor (CD88) effectively limits staphylococcal infection by promoting cytokine release and neutrophil infiltration. Here, using our established mouse model of GBS vaginal colonization, we observed that EP67 treatment results in rapid clearance of GBS from the murine vagina. However, this was not dependent on functional neutrophil recruitment or CD88 signaling, as EP67 treatment reduced the vaginal bacterial load in mice lacking CD88 or the major neutrophil receptor CXCr2. Interestingly, we found that EP67 inhibits GBS growth in vitro and in vivo and that antibacterial activity was specific to Streptococcus species. Our work establishes that EP67-mediated clearance of GBS is likely due to direct bacterial killing rather than to enhanced immune stimulation. We conclude that EP67 may have potential as a therapeutic to control GBS vaginal colonization.


Frontiers in Pediatrics | 2018

Group B Streptococcal Maternal Colonization and Neonatal Disease: Molecular Mechanisms and Preventative Approaches

Kathryn A. Patras; Victor Nizet

Group B Streptococcus (GBS) colonizes the gastrointestinal and vaginal epithelium of a significant percentage of healthy women, with potential for ascending intrauterine infection or transmission during parturition, creating a risk of serious disease in the vulnerable newborn. This review highlights new insights on the bacterial virulence determinants, host immune responses, and microbiome interactions that underpin GBS vaginal colonization, the proximal step in newborn infectious disease pathogenesis. From the pathogen perspective, the function GBS adhesins and biofilms, β-hemolysin/cytolysin toxin, immune resistance factors, sialic acid mimicry, and two-component transcriptional regulatory systems are reviewed. From the host standpoint, pathogen recognition, cytokine responses, and the vaginal mucosal and placental immunity to the pathogen are detailed. Finally, the rationale, efficacy, and potential unintended consequences of current universal recommended intrapartum antibiotic prophylaxis are considered, with updates on new developments toward a GBS vaccine or alternative approaches to reducing vaginal colonization.


PLOS ONE | 2016

Identification of CiaR Regulated Genes That Promote Group B Streptococcal Virulence and Interaction with Brain Endothelial Cells.

Rong Mu; Andrew S. Cutting; Yvette Del Rosario; Nicholas Villarino; Lara Stewart; Thomas A. Weston; Kathryn A. Patras; Kelly S. Doran

Group B Streptococcus (GBS) is a major causative agent of neonatal meningitis due to its ability to efficiently cross the blood-brain barrier (BBB) and enter the central nervous system (CNS). It has been demonstrated that GBS can invade human brain microvascular endothelial cells (hBMEC), a primary component of the BBB; however, the mechanism of intracellular survival and trafficking is unclear. We previously identified a two component regulatory system, CiaR/H, which promotes GBS intracellular survival in hBMEC. Here we show that a GBS strain deficient in the response regulator, CiaR, localized more frequently with Rab5, Rab7 and LAMP1 positive vesicles. Further, lysosomes isolated from hBMEC contained fewer viable bacteria following initial infection with the ΔciaR mutant compared to the WT strain. To characterize the contribution of CiaR-regulated genes, we constructed isogenic mutant strains lacking the two most down-regulated genes in the CiaR-deficient mutant, SAN_2180 and SAN_0039. These genes contributed to bacterial uptake and intracellular survival. Furthermore, competition experiments in mice showed that WT GBS had a significant survival advantage over the Δ2180 and Δ0039 mutants in the bloodstream and brain.


Journal of Visualized Experiments | 2016

A Murine Model of Group B Streptococcus Vaginal Colonization.

Kathryn A. Patras; Kelly S. Doran

Streptococcus agalactiae (group B Streptococcus, GBS), is a Gram-positive, asymptomatic colonizer of the human gastrointestinal tract and vaginal tract of 10 - 30% of adults. In immune-compromised individuals, including neonates, pregnant women, and the elderly, GBS may switch to an invasive pathogen causing sepsis, arthritis, pneumonia, and meningitis. Because GBS is a leading bacterial pathogen of neonates, current prophylaxis is comprised of late gestation screening for GBS vaginal colonization and subsequent peripartum antibiotic treatment of GBS-positive mothers. Heavy GBS vaginal burden is a risk factor for both neonatal disease and colonization. Unfortunately, little is known about the host and bacterial factors that promote or permit GBS vaginal colonization. This protocol describes a technique for establishing persistent GBS vaginal colonization using a single β-estradiol pre-treatment and daily sampling to determine bacterial load. It further details methods to administer additional therapies or reagents of interest and to collect vaginal lavage fluid and reproductive tract tissues. This mouse model will further the understanding of the GBS-host interaction within the vaginal environment, which will lead to potential therapeutic targets to control maternal vaginal colonization during pregnancy and to prevent transmission to the vulnerable newborn. It will also be of interest to increase our understanding of general bacterial-host interactions in the female vaginal tract.


Immunology and Cell Biology | 2017

Tamm–Horsfall glycoprotein engages human Siglec-9 to modulate neutrophil activation in the urinary tract

Kathryn A. Patras; Alison Coady; Joshua Olson; Syed R. Ali; Satish P RamachandraRao; Satish Kumar; Ajit Varki; Victor Nizet

Urinary tract infections are a major problem in human medicine for which better understanding of native immune defenses may reveal new pathways for therapeutic intervention. Tamm–Horsfall glycoprotein (THP), the most abundant urinary protein, interacts with bacteria including uropathogenic Escherichia coli (UPEC) as well host immune cells. In addition to its well‐studied functions to antagonize bacterial colonization, we hypothesize that THP serves a critical host defense function through innate immune modulation. Using isolated human neutrophils, we found that THP binds neutrophils and that this interaction reduces reactive oxygen species generation, chemotaxis and killing of UPEC. We discovered that THP engages the inhibitory neutrophil receptor sialic acid‐binding Ig‐like lectin‐9 (Siglec‐9), and mouse functional ortholog Siglec‐E, in a manner dependent on sialic acid on its N‐glycan moieties. THP‐null mice have significantly more neutrophils present in the urine compared with wild‐type mice, both with and without the presence of inflammatory stimuli. These data support THP as an important negative regulator of neutrophil activation in the urinary tract, with dual functions to counteract bacterial colonization and suppress excessive inflammation within the urinary tract.


The Journal of Infectious Diseases | 2014

Group B streptococcal serine-rich repeat proteins promote interaction with fibrinogen and vaginal colonization

Nai-Yu Wang; Kathryn A. Patras; Ho Seong Seo; Courtney K. Cavaco; Berenice Rösler; Melody N. Neely; Paul M. Sullam; Kelly S. Doran

Collaboration


Dive into the Kathryn A. Patras's collaboration.

Top Co-Authors

Avatar

Kelly S. Doran

San Diego State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Victor Nizet

University of California

View shared research outputs
Top Co-Authors

Avatar

Berenice Rösler

San Diego State University

View shared research outputs
Top Co-Authors

Avatar

Alison Coady

University of California

View shared research outputs
Top Co-Authors

Avatar

Ho Seong Seo

University of California

View shared research outputs
Top Co-Authors

Avatar

Joshua Olson

University of California

View shared research outputs
Top Co-Authors

Avatar

Marilyn L. Thoman

San Diego State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nai-Yu Wang

San Diego State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge