Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kathryn A. Yamada is active.

Publication


Featured researches published by Kathryn A. Yamada.


Circulation Research | 2000

Dephosphorylation and Intracellular Redistribution of Ventricular Connexin43 During Electrical Uncoupling Induced by Ischemia

Michael A. Beardslee; Deborah L. Lerner; Peter N. Tadros; James G. Laing; Eric C. Beyer; Kathryn A. Yamada; André G. Kléber; Richard B. Schuessler; Jeffrey E. Saffitz

Electrical uncoupling at gap junctions during acute myocardial ischemia contributes to conduction abnormalities and reentrant arrhythmias. Increased levels of intracellular Ca2+ and H+ and accumulation of amphipathic lipid metabolites during ischemia promote uncoupling, but other mechanisms may play a role. We tested the hypothesis that uncoupling induced by acute ischemia is associated with changes in phosphorylation of the major cardiac gap junction protein, connexin43 (Cx43). Adult rat hearts perfused on a Langendorff apparatus were subjected to ischemia or ischemia/reperfusion. Changes in coupling were monitored by measuring whole-tissue resistance. Changes in the amount and distribution of phosphorylated and nonphosphorylated isoforms of Cx43 were measured by immunoblotting and confocal immunofluorescence microscopy using isoform-specific antibodies. In control hearts, virtually all Cx43 identified immunohistochemically at apparent intercellular junctions was phosphorylated. During ischemia, however, Cx43 underwent progressive dephosphorylation with a time course similar to that of electrical uncoupling. The total amount of Cx43 did not change, but progressive reduction in total Cx43 immunofluorescent signal and concomitant accumulation of nonphosphorylated Cx43 signal occurred at sites of intercellular junctions. Functional recovery during reperfusion was associated with increased levels of phosphorylated Cx43. These observations suggest that uncoupling induced by ischemia is associated with dephosphorylation of Cx43, accumulation of nonphosphorylated Cx43 within gap junctions, and translocation of Cx43 from gap junctions into intracellular pools.


Circulation Research | 2005

Transgenic Expression of Fatty Acid Transport Protein 1 in the Heart Causes Lipotoxic Cardiomyopathy

Hsiu-Chiang Chiu; Attila Kovacs; Robert M. Blanton; Xianlin Han; Michael Courtois; Carla J. Weinheimer; Kathryn A. Yamada; Sylvain Brunet; Haodong Xu; Jeanne M. Nerbonne; Michael J. Welch; Nicole Fettig; Terry L. Sharp; Nandakumar Sambandam; Krista Olson; Daniel S. Ory; Jean E. Schaffer

Evidence is emerging that systemic metabolic disturbances contribute to cardiac myocyte dysfunction and clinically apparent heart failure, independent of associated coronary artery disease. To test the hypothesis that perturbation of lipid homeostasis in cardiomyocytes contributes to cardiac dysfunction, we engineered transgenic mice with cardiac-specific overexpression of fatty acid transport protein 1 (FATP1) using the &agr;-myosin heavy chain gene promoter. Two independent transgenic lines demonstrate 4-fold increased myocardial free fatty acid (FFA) uptake that is consistent with the known function of FATP1. Increased FFA uptake in this model likely contributes to early cardiomyocyte FFA accumulation (2-fold increased) and subsequent increased cardiac FFA metabolism (2-fold). By 3 months of age, transgenic mice have echocardiographic evidence of impaired left ventricular filling and biatrial enlargement, but preserved systolic function. Doppler tissue imaging and hemodynamic studies confirm that these mice have predominantly diastolic dysfunction. Furthermore, ambulatory ECG monitoring reveals prolonged QTc intervals, reflecting reductions in the densities of repolarizing, voltage-gated K+ currents in ventricular myocytes. Our results show that in the absence of systemic metabolic disturbances, such as diabetes or hyperlipidemia, perturbation of cardiomyocyte lipid homeostasis leads to cardiac dysfunction with pathophysiological findings similar to those in diabetic cardiomyopathy. Moreover, the MHC-FATP model supports a role for FATPs in FFA import into the heart in vivo.


Journal of Clinical Investigation | 1997

Slow ventricular conduction in mice heterozygous for a connexin43 null mutation.

Patricia A. Guerrero; Richard B. Schuessler; Lloyd M. Davis; Eric C. Beyer; Carolyn M. Johnson; Kathryn A. Yamada; Jeffrey E. Saffitz

To characterize the role of the gap junction protein connexin43 (Cx43) in ventricular conduction, we studied hearts of mice with targeted deletion of the Cx43 gene. Mice homozygous for the Cx43 null mutation (Cx43 -/-) die shortly after birth. Attempts to record electrical activity in neonatal Cx43 -/- hearts (n = 5) were unsuccessful. Ventricular epicardial conduction of paced beats, however, was 30% slower in heterozygous (Cx43 -/+) neonatal hearts (0.14+/-0.04 m/s, n = 27) than in wild-type (Cx43 +/+) hearts (0.20+/-0.07 m/s, n = 32; P < 0.001). This phenotype was even more severe in adult mice; ventricular epicardial conduction was 44% slower in 6-9 mo-old Cx43 -/+ hearts (0.18+/-0.03 m/s, n = 5) than in wild-type hearts (0.32+/-0.07 m/s, n = 7, P < 0.001). Electrocardiograms revealed significant prolongation of the QRS complex in adult Cx43 -/+ mice (13.4+/-1.8 ms, n = 13) compared with Cx43 +/+ mice (11.5+/-1.4 ms, n = 12, P < 0.01). Whole-cell recordings of action potential parameters in cultured disaggregated neonatal ventricular myocytes from Cx43 -/+ and +/+ hearts showed no differences. Thus, reduction in the abundance of a major cardiac gap junction protein through targeted deletion of a Cx43 allele directly leads to slowed ventricular conduction.


Circulation | 2000

Accelerated onset and increased incidence of ventricular arrhythmias induced by ischemia in Cx43-deficient mice.

Deborah L. Lerner; Kathryn A. Yamada; Richard B. Schuessler; Jeffrey E. Saffitz

BACKGROUND Myocardial ischemia causes profound changes in both active membrane currents and passive electrical properties. Because these complex changes develop and progress concomitantly, it has not been possible to elucidate the relative contributions of any one component to arrhythmogenesis induced by acute ischemia. Cx43+/- mice express 50% of the normal level of connexin43 (Cx43), the major ventricular electrical coupling protein, but are otherwise identical to wild-type (Cx43+/+) mice. Comparison of arrhythmogenesis in Cx43+/- and +/+ mice can provide insights into the role of changes in electrical coupling as an independent variable in the complex setting of acute ischemia. METHODS AND RESULTS Acute ischemia was induced in isolated perfused mouse hearts by occlusion of the left anterior descending coronary artery. Spontaneous ventricular tachyarrhythmias (VT) occurred in more than twice as many Cx43+/- hearts than Cx43+/+ hearts. VT was induced in nearly 3 times as many Cx43+/- hearts. Multiple runs and prolonged runs of spontaneous VT were more frequent in Cx43+/- hearts. Onset of the first run of VT occurred significantly earlier in Cx43+/- hearts. Premature ventricular beats were also more frequent in Cx43+/- hearts. The size of the hypoperfused region was equivalent in both groups. CONCLUSIONS Reduced expression of Cx43 accelerates the onset and increases the incidence, frequency, and duration of ventricular tachyarrhythmias after coronary artery occlusion. Thus diminished electrical coupling per se plays a critical role in arrhythmogenesis induced by acute ischemia.


Circulation Research | 2000

Pulsatile Stretch Remodels Cell-to-Cell Communication in Cultured Myocytes

Jianping Zhuang; Kathryn A. Yamada; Jeffrey E. Saffitz; André G. Kléber

Mechanical stretch is thought to play an important role in remodeling atrial and ventricular myocardium and may produce substrates that promote arrhythmogenesis. In the present work, neonatal rat ventricular myocytes were cultured for 4 days as confluent monolayers on thin silicone membranes and then subjected to linear pulsatile stretch for up to 6 hours. Action potential upstrokes and propagation velocity (&THgr;) were measured with multisite optical recording of transmembrane voltage of the cells stained with the voltage-sensitive dye RH237. Expression of the gap junction protein connexin43 (Cx43) and the fascia adherens junction protein N-cadherin was measured immunohistochemically in the same preparations. Pulsatile stretch caused dramatic upregulation of intercellular junction proteins after only 1 hour and a further increase after 6 hours (Cx43 signal increased from 0.73 to 1.86 and 2.02% cell area, and N-cadherin signal increased from 1.21 to 2.11 and 2.74% cell area after 1 and 6 hours, respectively). This was paralleled by an increase in &THgr; from 27 to 35 cm/s after 1 hour and 37 cm/s after 6 hours. No significant change in the upstroke velocity of the action potential or cell size was observed. Increased &THgr; and protein expression were not reversible after 24 hours of relaxation. Nonpulsatile (static) stretch produced qualitatively similar but significantly smaller changes than pulsatile stretch. Thus, pulsatile linear stretch in vitro causes marked upregulation of proteins that form electrical and mechanical junctions, as well as a concomitant increase in propagation velocity. These changes may contribute to arrhythmogenesis in myocardium exposed to acute stretch.


The Journal of Physiology | 2004

Heterogeneous expression of repolarizing, voltage‐gated K+ currents in adult mouse ventricles

Sylvain Brunet; Franck Aimond; Huilin Li; Weinong Guo; Jodene Eldstrom; David Fedida; Kathryn A. Yamada; Jeanne M. Nerbonne

Previous studies have documented the expression of four kinetically distinct voltage‐gated K+ (Kv) currents, Ito,f, Ito,s, IK,slow and Iss, in mouse ventricular myocytes and demonstrated that Ito,f and Ito,s are differentially expressed in the left ventricular apex and the interventricular septum. The experiments here were undertaken to test the hypothesis that there are further regional differences in the expression of Kv currents or the Kv subunits (Kv4.2, Kv4.3, KChIP2, Kv1.5, Kv2.1) encoding these currents in adult male and female (C57BL6) mouse ventricles. Whole‐cell voltage‐clamp recordings revealed that mean (±s.e.m.) peak outward K+ current and Ito,f densities are significantly (P < 0.001) higher in cells isolated from the right (RV) than the left (LV) ventricles. Within the LV, peak outward K+ current and Ito,f densities are significantly (P < 0.05) higher in cells from the apex than the base. In addition, Ito,f and IK,slow densities are lower in cells isolated from the endocardial (Endo) than the epicardial (Epi) surface of the LV wall. Importantly, similar to LV apex cells, Ito,s is not detected in RV, LV base, LV Epi or LV Endo myocytes. No measurable differences in K+ current densities or properties are evident in RV or LV cells from adult male and female mice, although Ito,f, Ito,s, IK,slow and Iss densities are significantly (P < 0.01) higher, and action potential durations at 50% (APD50) are significantly (P < 0.05) shorter in male septum cells. Western blot analysis revealed that the expression levels of Kv4.2, Kv4.3, KChIP2, Kv1.5 and Kv2.1 are similar in male and female ventricles. In addition, consistent with the similarities in repolarizing Kv current densities, no measurable differences in ECG parameters, including corrected QT (QTc) intervals, are detected in telemetric recordings from adult male and female (C57BL6) mice.


Circulation | 2014

Deep RNA Sequencing Reveals Dynamic Regulation of Myocardial Noncoding RNAs in Failing Human Heart and Remodeling With Mechanical Circulatory Support

Kai-Chien Yang; Kathryn A. Yamada; Akshar Patel; Veli K. Topkara; Isaac George; Faisal H. Cheema; Gregory A. Ewald; Douglas L. Mann; Jeanne M. Nerbonne

Background— Microarrays have been used extensively to profile transcriptome remodeling in failing human heart, although the genomic coverage provided is limited and fails to provide a detailed picture of the myocardial transcriptome landscape. Here, we describe sequencing-based transcriptome profiling, providing comprehensive analysis of myocardial mRNA, microRNA (miRNA), and long noncoding RNA (lncRNA) expression in failing human heart before and after mechanical support with a left ventricular (LV) assist device (LVAD). Methods and Results— Deep sequencing of RNA isolated from paired nonischemic (NICM; n=8) and ischemic (ICM; n=8) human failing LV samples collected before and after LVAD and from nonfailing human LV (n=8) was conducted. These analyses revealed high abundance of mRNA (37%) and lncRNA (71%) of mitochondrial origin. miRNASeq revealed 160 and 147 differentially expressed miRNAs in ICM and NICM, respectively, compared with nonfailing LV. Among these, only 2 (ICM) and 5 (NICM) miRNAs are normalized with LVAD. RNASeq detected 18 480, including 113 novel, lncRNAs in human LV. Among the 679 (ICM) and 570 (NICM) lncRNAs differentially expressed with heart failure, ≈10% are improved or normalized with LVAD. In addition, the expression signature of lncRNAs, but not miRNAs or mRNAs, distinguishes ICM from NICM. Further analysis suggests that cis-gene regulation represents a major mechanism of action of human cardiac lncRNAs. Conclusions— The myocardial transcriptome is dynamically regulated in advanced heart failure and after LVAD support. The expression profiles of lncRNAs, but not mRNAs or miRNAs, can discriminate failing hearts of different pathologies and are markedly altered in response to LVAD support. These results suggest an important role for lncRNAs in the pathogenesis of heart failure and in reverse remodeling observed with mechanical support.


Cardiovascular Research | 2001

High resolution optical mapping reveals conduction slowing in connexin43 deficient mice.

Benjamin C. Eloff; Deborah L. Lerner; Kathryn A. Yamada; Richard B. Schuessler; Jeffrey E. Saffitz; David S. Rosenbaum

UNLABELLED Analysis of mice with genetically altered expression of cardiac connexins can provide insights into the role of individual gap junction channel proteins in cell-to-cell communication, impulse propagation, and arrhythmias. However, conflicting results have been reported regarding conduction velocity slowing in mice heterozygous for a null mutation in the gene encoding connexin43 (Cx43). METHODS High-resolution optical mapping was used to record action potentials from 256 sites, simultaneously, on the ventricular surface of Langendorff perfused hearts from 15 heterozygous (Cx43+/-) and 8 wildtype (Cx43+/+) mice (controls). A sensitive method for measuring epicardial conduction velocity was developed to minimize confounding influences of subepicardial breakthrough and virtual electrode effects. RESULTS Epicardial conduction velocity was significantly slower (23 to 35%, P<0.01) in Cx43+/- mice compared to wildtype. There was no change in conduction patterns or anisotropic ratio (Cx43+/- 1.54+/-0.33; Cx43+/+ 1.57+/-0.17) suggesting that Cx43 expression was reduced uniformly throughout myocardium. The magnitude of reductions in conduction velocity and Cx43 protein expression (45%) were similar in mice in which the null allele occurred in a pure C57BL/6J genetic background versus a mixed (C57BL/6J X 129) background. Action potential duration did not differ between mice of different genotypes. CONCLUSIONS A approximately 50% reduction of Cx43 expression causes significant conduction velocity slowing in the Cx43+/- mouse heart. The apparent lack of conduction velocity changes reported in previous studies may be related to technical factors rather than variations in genetic background. High-resolution optical mapping is a powerful tool for investigating molecular determinants of propagation and arrhythmias in genetically engineered mice.


Circulation Research | 2000

Connexin Expression and Turnover: Implications for Cardiac Excitability

Jeffrey E. Saffitz; James G. Laing; Kathryn A. Yamada

Electrical activation of the heart requires current transfer from one cell to another via gap junctions, arrays of densely packed intercellular channels. The extent to which cardiac myocytes are coupled is determined by multiple mechanisms, including tissue-specific patterns of expression of diverse gap junction channel proteins (connexins), and regulatory pathways that control connexin synthesis, intracellular trafficking, assembly into channels, and degradation. Many connexins, including those expressed in the heart, have been found to turn over rapidly. Recent studies in the intact adult heart suggest that connexin43, the principal cardiac connexin, is surprisingly short-lived (half-life approximately 1.3 hours). Both the proteasome and the lysosome participate in connexin43 degradation. Other ion channel proteins, such as those forming selected voltage-gated K(+) channels, may also exhibit rapid turnover kinetics. Regulation of connexin degradation may be an important mechanism for adjusting intercellular coupling in the heart under normal and pathophysiological conditions.


Circulation Research | 2005

Targeted Deletion of Kv4.2 Eliminates Ito,f and Results in Electrical and Molecular Remodeling, With No Evidence of Ventricular Hypertrophy or Myocardial Dysfunction

Weinong Guo; W. Edward Jung; Céline Marionneau; Franck Aimond; Haodong Xu; Kathryn A. Yamada; T. Schwarz; Sophie Demolombe; Jeanne M. Nerbonne

Previous studies have demonstrated a role for voltage-gated K+ (Kv) channel &agr; subunits of the Kv4 subfamily in the generation of rapidly inactivating/recovering cardiac transient outward K+ current, Ito,f, channels. Biochemical studies suggest that mouse ventricular Ito,f channels reflect the heteromeric assembly of Kv4.2 and Kv4.3 with the accessory subunits, KChIP2 and Kv&bgr;1, and that Kv4.2 is the primary determinant of regional differences in (mouse ventricular) Ito,f densities. Interestingly, the phenotypic consequences of manipulating Ito,f expression in different mouse models are distinct. In the experiments here, the effects of the targeted deletion of Kv4.2 (Kv4.2−/−) were examined. Unexpectedly, voltage-clamp recordings from Kv4.2−/− ventricular myocytes revealed that Ito,f is eliminated. In addition, the slow transient outward K+ current, Ito,s, and the Kv1.4 protein (which encodes Ito,s) are upregulated in Kv4.2−/− ventricles. Although Kv4.3 mRNA/protein expression is not measurably affected, KChIP2 expression is markedly reduced in Kv4.2−/− ventricles. Similar to Kv4.3, expression of Kv&bgr;1, as well as Kv1.5 and Kv2.1, is similar in wild-type and Kv4.2−/− ventricles. In addition, and in marked contrast to previous findings in mice expressing a truncated Kv4.2 transgene, the elimination Ito,f in Kv4.2−/− mice does not result in ventricular hypertrophy. Taken together, these findings demonstrate not only an essential role for Kv4.2 in the generation of mouse ventricular Ito,f channels but also that the loss of Ito,f per se does not have overt pathophysiological consequences.

Collaboration


Dive into the Kathryn A. Yamada's collaboration.

Top Co-Authors

Avatar

Jeffrey E. Saffitz

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar

Evelyn M. Kanter

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Jeanne M. Nerbonne

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Richard B. Schuessler

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Peter B. Corr

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Tetsuo Betsuyaku

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

James G. Laing

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Yan Zhang

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Deborah L. Lerner

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Karen G. Green

Washington University in St. Louis

View shared research outputs
Researchain Logo
Decentralizing Knowledge