Kathryn Aston-Mourney
University of Washington
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kathryn Aston-Mourney.
American Journal of Pathology | 2011
Catherine A. Jurgens; Mirna N. Toukatly; Corinne L. Fligner; Jayalakshmi Udayasankar; Shoba L. Subramanian; Sakeneh Zraika; Kathryn Aston-Mourney; Darcy B. Carr; Per Westermark; Gunilla T. Westermark; Steven E. Kahn; Rebecca L. Hull
Amyloid deposition and reduced β-cell mass are pathological hallmarks of the pancreatic islet in type 2 diabetes; however, whether the extent of amyloid deposition is associated with decreased β-cell mass is debated. We investigated the possible relationship and, for the first time, determined whether increased islet amyloid and/or decreased β-cell area quantified on histological sections is correlated with increased β-cell apoptosis. Formalin-fixed, paraffin-embedded human pancreas sections from subjects with (n = 29) and without (n = 39) diabetes were obtained at autopsy (64 ± 2 and 70 ± 4 islets/subject, respectively). Amyloid and β cells were visualized by thioflavin S and insulin immunolabeling. Apoptotic β cells were detected by colabeling for insulin and by TUNEL. Diabetes was associated with increased amyloid deposition, decreased β-cell area, and increased β-cell apoptosis, as expected. There was a strong inverse correlation between β-cell area and amyloid deposition (r = -0.42, P < 0.001). β-Cell area was selectively reduced in individual amyloid-containing islets from diabetic subjects, compared with control subjects, but amyloid-free islets had β-cell area equivalent to islets from control subjects. Increased amyloid deposition was associated with β-cell apoptosis (r = 0.56, P < 0.01). Thus, islet amyloid is associated with decreased β-cell area and increased β-cell apoptosis, suggesting that islet amyloid deposition contributes to the decreased β-cell mass that characterizes type 2 diabetes.
Diabetologia | 2008
Kathryn Aston-Mourney; Joseph Proietto; Grant Morahan; Sofianos Andrikopoulos
In many countries, first- or second-line pharmacological treatment of patients with type 2 diabetes consists of sulfonylureas (such as glibenclamide [known as glyburide in the USA and Canada]), which stimulate the beta cell to secrete insulin. However, emerging evidence suggests that forcing the beta cell to secrete insulin at a time when it is struggling to cope with the demands of obesity and insulin resistance may accelerate its demise. Studies on families with persistent hyperinsulinaemic hypoglycaemia of infancy (PHHI), the primary defect of which is hypersecretion of insulin, have shown that overt diabetes can develop later in life despite normal insulin sensitivity. In addition, in vitro experiments have suggested that reducing insulin secretion from islets isolated from patients with diabetes can restore insulin pulsatility and improve function. This article will explore the hypothesis that forcing the beta cell to hypersecrete insulin may be counterproductive and lead to dysfunction and death via mechanisms that may involve the endoplasmic reticulum and oxidative stress. We suggest that, in diabetes, therapeutic approaches should be targeted towards relieving the demand on the beta cell to secrete insulin.
Diabetes | 2008
Melkam Kebede; Jenny M Favaloro; Jenny E. Gunton; D. Ross Laybutt; Margaret Shaw; Nicole Wong; Barbara C. Fam; Kathryn Aston-Mourney; Christian Rantzau; Anthony Zulli; Joseph Proietto; Sofianos Andrikopoulos
OBJECTIVE—Fructose-1,6-bisphosphatase (FBPase) is a gluconeogenic enzyme that is upregulated in islets or pancreatic β-cell lines exposed to high fat. However, whether specific β-cell upregulation of FBPase can impair insulin secretory function is not known. The objective of this study therefore is to determine whether a specific increase in islet β-cell FBPase can result in reduced glucose-mediated insulin secretion. RESEARCH DESIGN AND METHODS—To test this hypothesis, we have generated three transgenic mouse lines overexpressing the human FBPase (huFBPase) gene specifically in pancreatic islet β-cells. In addition, to investigate the biochemical mechanism by which elevated FBPase affects insulin secretion, we made two pancreatic β-cell lines (MIN6) stably overexpressing huFBPase. RESULTS—FBPase transgenic mice showed reduced insulin secretion in response to an intravenous glucose bolus. Compared with the untransfected parental MIN6, FBPase-overexpressing cells showed a decreased cell proliferation rate and significantly depressed glucose-induced insulin secretion. These defects were associated with a decrease in the rate of glucose utilization, resulting in reduced cellular ATP levels. CONCLUSIONS—Taken together, these results suggest that upregulation of FBPase in pancreatic islet β-cells, as occurs in states of lipid oversupply and type 2 diabetes, contributes to insulin secretory dysfunction.OBJECTIVE Fructose-1,6-bisphosphatase (FBPase) is a gluconeogenic enzyme that is upregulated in islets or pancreatic beta-cell lines exposed to high fat. However, whether specific beta-cell upregulation of FBPase can impair insulin secretory function is not known. The objective of this study therefore is to determine whether a specific increase in islet beta-cell FBPase can result in reduced glucose-mediated insulin secretion. RESEARCH DESIGN AND METHODS To test this hypothesis, we have generated three transgenic mouse lines overexpressing the human FBPase (huFBPase) gene specifically in pancreatic islet beta-cells. In addition, to investigate the biochemical mechanism by which elevated FBPase affects insulin secretion, we made two pancreatic beta-cell lines (MIN6) stably overexpressing huFBPase. RESULTS FBPase transgenic mice showed reduced insulin secretion in response to an intravenous glucose bolus. Compared with the untransfected parental MIN6, FBPase-overexpressing cells showed a decreased cell proliferation rate and significantly depressed glucose-induced insulin secretion. These defects were associated with a decrease in the rate of glucose utilization, resulting in reduced cellular ATP levels. CONCLUSIONS Taken together, these results suggest that upregulation of FBPase in pancreatic islet beta-cells, as occurs in states of lipid oversupply and type 2 diabetes, contributes to insulin secretory dysfunction.
American Journal of Physiology-endocrinology and Metabolism | 2013
Kathryn Aston-Mourney; Shoba L. Subramanian; Sakeneh Zraika; Thanya Samarasekera; Daniel T. Meier; Lynn Goldstein; Rebecca L. Hull
The dipeptidyl peptidase-4 (DPP-4) inhibitor sitagliptin is an attractive therapy for diabetes, as it increases insulin release and may preserve β-cell mass. However, sitagliptin also increases β-cell release of human islet amyloid polypeptide (hIAPP), the peptide component of islet amyloid, which is cosecreted with insulin. Thus, sitagliptin treatment may promote islet amyloid formation and its associated β-cell toxicity. Conversely, metformin treatment decreases islet amyloid formation by decreasing β-cell secretory demand and could therefore offset sitagliptins potential proamyloidogenic effects. Sitagliptin treatment has also been reported to be detrimental to the exocrine pancreas. We investigated whether long-term sitagliptin treatment, alone or with metformin, increased islet amyloid deposition and β-cell toxicity and induced pancreatic ductal proliferation, pancreatitis, and/or pancreatic metaplasia/neoplasia. hIAPP transgenic and nontransgenic littermates were followed for 1 yr on no treatment, sitagliptin, metformin, or the combination. Islet amyloid deposition, β-cell mass, insulin release, and measures of exocrine pancreas pathology were determined. Relative to untreated mice, sitagliptin treatment did not increase amyloid deposition, despite increasing hIAPP release, and prevented amyloid-induced β-cell loss. Metformin treatment alone or with sitagliptin decreased islet amyloid deposition to a similar extent vs untreated mice. Ductal proliferation was not altered among treatment groups, and no evidence of pancreatitis, ductal metaplasia, or neoplasia were observed. Therefore, long-term sitagliptin treatment stimulates β-cell secretion without increasing amyloid formation and protects against amyloid-induced β-cell loss. This suggests a novel effect of sitagliptin to protect the β-cell in type 2 diabetes that appears to occur without adverse effects on the exocrine pancreas.
Journal of Biological Chemistry | 2010
Sakeneh Zraika; Kathryn Aston-Mourney; Peter Marek; Rebecca L. Hull; Pattie S. Green; Jayalakshmi Udayasankar; Shoba L. Subramanian; Daniel P. Raleigh; Steven E. Kahn
Deposition of islet amyloid polypeptide (IAPP) as islet amyloid in type 2 diabetes contributes to loss of β-cell function and mass, yet the mechanism for its occurrence is unclear. Neprilysin is a metallopeptidase known to degrade amyloid in Alzheimer disease. We previously demonstrated neprilysin to be present in pancreatic islets and now sought to determine whether it plays a role in degrading islet amyloid. We used an in vitro model where cultured human IAPP (hIAPP) transgenic mouse islets develop amyloid and thereby have increased β-cell apoptosis. Islet neprilysin activity was inhibited or up-regulated using a specific inhibitor or adenovirus encoding neprilysin, respectively. Following neprilysin inhibition, islet amyloid deposition and β-cell apoptosis increased by 54 and 75%, respectively, whereas when neprilysin was up-regulated islet amyloid deposition and β-cell apoptosis both decreased by 79%. To determine if neprilysin modulated amyloid deposition by cleaving hIAPP, analysis of hIAPP incubated with neprilysin was performed by mass spectrometry, which failed to demonstrate neprilysin-induced cleavage. Rather, neprilysin may act by reducing hIAPP fibrillogenesis, which we showed to be the case by fluorescence-based thioflavin T binding studies and electron microscopy. In summary, neprilysin decreases islet amyloid deposition by inhibiting hIAPP fibril formation, rather than degrading hIAPP. These findings suggest that targeting the role of neprilysin in IAPP fibril assembly, in addition to IAPP cleavage by other peptidases, may provide a novel approach to reduce and/or prevent islet amyloid deposition in type 2 diabetes.
Journal of Biological Chemistry | 2013
Kathryn Aston-Mourney; Sakeneh Zraika; Jayalakshmi Udayasankar; Shoba L. Subramanian; Pattie S. Green; Steven E. Kahn; Rebecca L. Hull
Background: Aggregation of IAPP is toxic to pancreatic islet β-cells. Results: MMP-9 cleaves IAPP, preventing its aggregation and toxicity; islet MMP-9 mRNA levels are reduced in type 2 diabetes. Conclusion: Reduced islet MMP-9 may contribute to amyloid-induced β-cell loss in type 2 diabetes. Significance: MMP-9 is a novel mediator of IAPP metabolism and a potential target to limit amyloid formation in diabetes. Deposition of islet amyloid polypeptide (IAPP) as amyloid is a pathological hallmark of the islet in type 2 diabetes, which is toxic to β-cells. We previously showed that the enzyme neprilysin reduces islet amyloid deposition and thereby reduces β-cell apoptosis, by inhibiting fibril formation. Two other enzymes, matrix metalloproteinase (MMP)-2 and MMP-9, are extracellular gelatinases capable of degrading another amyloidogenic peptide, Aβ, the constituent of amyloid deposits in Alzheimer disease. We therefore investigated whether MMP-2 and MMP-9 play a role in reducing islet amyloid deposition. MMP-2 and MMP-9 mRNA were present in mouse islets but only MMP-9 activity was detectable. In an islet culture model where human IAPP (hIAPP) transgenic mouse islets develop amyloid but nontransgenic islets do not, a broad spectrum MMP inhibitor (GM6001) and an MMP-2/9 inhibitor increased amyloid formation and the resultant β-cell apoptosis. In contrast, a specific MMP-2 inhibitor had no effect on either amyloid deposition or β-cell apoptosis. Mass spectrometry demonstrated that MMP-9 degraded amyloidogenic hIAPP but not nonamyloidogenic mouse IAPP. Thus, MMP-9 constitutes an endogenous islet protease that limits islet amyloid deposition and its toxic effects via degradation of hIAPP. Because islet MMP-9 mRNA levels are decreased in type 2 diabetic subjects, islet MMP-9 activity may also be decreased in human type 2 diabetes, thereby contributing to increased islet amyloid deposition and β-cell loss. Approaches to increase islet MMP-9 activity could reduce or prevent amyloid deposition and its toxic effects in type 2 diabetes.
Annals of Epidemiology | 2013
Mark M. Smits; Pier Woudstra; Kristina M. Utzschneider; Jenny Tong; Fernando Gerchman; Mirjam Faulenbach; Darcy B. Carr; Kathryn Aston-Mourney; Alan Chait; Robert H. Knopp; James B. Meigs; Edward J. Boyko; Steven E. Kahn
PURPOSE Confirmatory factor analysis (CFA) was used to test the hypothesis whether adipocytokines are associated with the risk factor cluster that characterizes the metabolic syndrome (MetS). METHODS Data from 134 nondiabetic subjects were analyzed using CFA. Insulin sensitivity (SI) was quantified using intravenous glucose tolerance tests, visceral fat area by computed tomography and fasting high-density lipoprotein, triglycerides, monocyte chemoattractant protein-1 (MCP-1), serum amyloid A (SAA), tumor necrosis factor (TNF)-α, adiponectin, resistin, leptin, interleukin (IL)-6, C-reactive protein (CRP), and plasminogen activator inhibitor (PAI)-1 were measured. RESULTS The basic model representing the MetS included six indicators comprising obesity, SI, lipids, and hypertension, and demonstrated excellent goodness of fit. Using multivariate analysis, MCP-1, SAA, and TNF-α were not independently associated with any of the MetS variables. Adiponectin, resistin, leptin, CRP, and IL-6 were associated with at least one of the risk factors, but when added to the basic model decreased all goodness-of-fit parameters. PAI-1 was associated with all cardiometabolic factors and improved goodness-of-fit compared with the basic model. CONCLUSIONS Addition of PAI-1 increased the CFA model goodness of fit compared with the basic model, suggesting that this protein may represent an added feature of the MetS.
Expert Opinion on Investigational Drugs | 2005
Kathryn Aston-Mourney; Joseph Proietto; Sofianos Andrikopoulos
Type 2 diabetes is associated with insulin resistance and reduced insulin secretion, which results in hyperglycaemia. This can then lead to diabetic complications such as retinopathy, neuropathy, nephropathy and cardiovascular disease. Although insulin resistance may be present earlier in the progression of the disease, it is now generally accepted that it is the deterioration in insulin-secretory function that leads to hyperglycaemia. This reduction in insulin secretion in Type 2 diabetes is due to both islet β-cell dysfunction and death. Therefore, interventions that maintain the normal function and protect the pancreatic islet β-cells from death are crucial in the treatment of Type 2 diabetes so that plasma glucose levels may be maintained within the normal range. Recently, a number of compounds have been shown to protect β-cells from failure. This review examines the evidence that the existing therapies for Type 2 diabetes that were developed to lower plasma glucose (metformin) or improve insulin sensitivity (thiazolidinediones) may also have islet-protective function. Newer emerging therapeutic agents that are designed to increase the levels of glucagon-like peptide-1 not only stimulate insulin secretion but also appear to increase islet β-cell mass. Evidence will also be presented that the future of drug therapy designed to prevent β-cell failure should target the formation of advanced glycation end products and alleviate oxidative and endoplasmic reticulum stress.
Transplantation proceedings | 2013
Jayalakshmi Udayasankar; Sakeneh Zraika; Kathryn Aston-Mourney; Shoba L. Subramanian; Barbara Brooks-Worrell; Gerald J. Taborsky; Rebecca L. Hull
In human islet transplantation, insulin independence decreases over time. We previously showed that amyloid deposition following transplantation of islets from human islet amyloid polypeptide (hIAPP) transgenic mice resulted in ß-cell loss and that rosiglitazone treatment decreased islet amyloid deposition and preserved ß-cell area in the endogenous pancreas of hIAPP transgenic mice. Thus, we sought to determine if rosiglitazone treatment decreases islet amyloid deposition and the associated ß-cell loss after islet transplantation. Streptozocin-diabetic mice were transplanted with 100 islets from hIAPP transgenic (T) mice or nontransgenic (NT) littermates under the kidney capsule and received either rosiglitazone (R) in drinking water or plain drinking water (C). The resultant groups (NTC [n = 11], NTR [n = 9], TC [n = 14], and TR [n = 10]) were followed for 12 weeks after which the graft was removed and processed for histology. Amyloid was detected in nearly all T islet grafts (TC = 13/14, TR = 10/10) but not in NT grafts. Rosiglitazone did not alter amyloid deposition (% graft area occupied by amyloid; TC: 2.15 ± 0.7, TR: 1.72 ± 0.66; P = .86). % ß-cell/graft area was decreased in the TC grafts compared to NTC (56.2 ± 3.1 vs 73.8 ± 1.4; P < .0001) but was not different between TC and TR groups (56.2 ± 3.1 vs 61.0 ± 2.9; P = .34). Plasma glucose levels before and after transplantation did not differ between NTC and TC groups and rosiglitazone did not affect plasma glucose levels post-islet transplantation. Rosiglitazone did not decrease amyloid deposition in hIAPP transgenic islet grafts. Therefore, rosiglitazone treatment of recipients of amyloid forming islets may not improve transplantation outcomes.
Diabetes, Obesity and Metabolism | 2017
Vidhi Gaur; Timothy Connor; Kylie Venardos; Darren C. Henstridge; Sheree D. Martin; Courtney Swinton; Shona Morrison; Kathryn Aston-Mourney; Stefan M. Gehrig; Roelof van Ewijk; Gordon S. Lynch; Mark A. Febbraio; Gregory R. Steinberg; Mark Hargreaves; Ken Walder; Sean L. McGee
To determine the effect of Scriptaid, a compound that can replicate aspects of the exercise adaptive response through disruption of the class IIa histone deacetylase (HDAC) corepressor complex, on muscle insulin action in obesity.