Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kathryn E. Knowles is active.

Publication


Featured researches published by Kathryn E. Knowles.


Journal of the American Chemical Society | 2008

A Homogeneous System for the Photogeneration of Hydrogen from Water Based on a Platinum(II) Terpyridyl Acetylide Chromophore and a Molecular Cobalt Catalyst

Pingwu Du; Kathryn E. Knowles; Richard Eisenberg

The complex [Co(dmgH)2pyCl]2+ (1, dmgH = dimethylglyoximate, py = pridine) has been used as a molecular catalyst for visible light driven hydrogen production in the presence of [Pt(tolylterpyridine)(phenylacetylide)]+ (3) as a photosensitizer and triethanolamine (TEOA) as a sacrificial reducing agent. Complex 3 is quenched oxidatively by [Co(dmgH)pyCl]2+ (1) with a rate constant kq of 1.27 x 10(9) M(-1) s(-1). Photogeneration of H2 is only seen when 1 + 3 + TEOA are all present. H2 production is maximized for this system at pH 8.5 and declines to very low levels at pH < 7 and pH > 12. Irradiation of the reaction solution initially containing 1.61 x 10(-2) M TEOA, 1.11 x 10(-5) M of 3, and 1.99 x 10(-4) M of Co catalyst 1 in MeCN/water (3:2 v/v) at pH = 8.5 for 10 h with lambda > 410 nm yields 400 turnovers of H2. When TEOA is 0.27 M, approximately 1000 turnovers are obtained after 10 h of irradiation. Spectroscopic study of the photolyses solutions suggests that H2 formation proceeds via Co(I) and protonation to form Co(III) hydride species.


ACS Nano | 2011

A multi-timescale map of radiative and nonradiative decay pathways for excitons in CdSe quantum dots.

Kathryn E. Knowles; Eric A. McArthur; Emily A. Weiss

A combination of transient absorption (TA) and time-resolved photoluminescence (TRPL) spectroscopies performed on solution-phase samples of colloidal CdSe quantum dots (QDs) allows the construction of a time-resolved, charge carrier-resolved map of decay from the first excitonic state of the QD. Data from TA and TRPL yield the same six exponential components, with time constants ranging from ∼1 ps to 50 ns, for excitonic decay. Comparison of TA signals in the visible and near-infrared (NIR) spectral regions enables determination of the relative contributions of electron and hole dynamics to each decay component, and comparison of TA and TRPL reveals that each component represents a competition between radiative and nonradiative decay pathways. In total, these data suggest that the QD sample comprises at least three distinct populations that differ in both the radiative and nonradiative decay pathways available to the excitonic charge carriers, and provide evidence for multiple emissive excitonic states in which the hole is not in the valence band, but rather a relaxed or trapped state.


Nano Letters | 2015

Nanocrystals for Luminescent Solar Concentrators

Liam R. Bradshaw; Kathryn E. Knowles; Stephen R. McDowall; Daniel R. Gamelin

Luminescent solar concentrators (LSCs) harvest sunlight over large areas and concentrate this energy onto photovoltaics or for other uses by transporting photons through macroscopic waveguides. Although attractive for lowering solar energy costs, LSCs remain severely limited by luminophore reabsorption losses. Here, we report a quantitative comparison of four types of nanocrystal (NC) phosphors recently proposed to minimize reabsorption in large-scale LSCs: two nanocrystal heterostructures and two doped nanocrystals. Experimental and numerical analyses both show that even the small core absorption of the leading NC heterostructures causes major reabsorption losses at relatively short transport lengths. Doped NCs outperform the heterostructures substantially in this critical property. A new LSC phosphor is introduced, nanocrystalline Cd(1-x)Cu(x)Se, that outperforms all other leading NCs by a significant margin in both small- and large-scale LSCs under full-spectrum conditions.


Journal of the American Chemical Society | 2010

Chemical control of the photoluminescence of CdSe quantum dot-organic complexes with a series of para-substituted aniline ligands.

Kathryn E. Knowles; Daniel B. Tice; Eric A. McArthur; Gemma C. Solomon; Emily A. Weiss

Replacement of the native (as-synthesized) ligands of colloidal CdSe QDs with varying concentrations of a series of para-substituted anilines (R-An), where R ranges from strongly electron-withdrawing to strongly electron-donating, decreases the PL of the QDs. The molar ratio of R-An to QD ([R-An]:[QD]) at which the PL decreases by 50% shifts by 4 orders of magnitude over the series R-An. The model employed to describe the data combines a Freundlich binding isotherm (which reflects the dependence of the binding affinity of the amine headgroups of R-An on the substituent R) with a function that describes the response of the PL to R-An ligands once they are bound at their equilibrium surface coverage. The latter function includes as a parameter the rate constant, k(nr), for nonradiative decay of the exciton at a site to which an R-An ligand is coordinated. The value of this parameter reveals that the predominant mechanism of QD-ligand interaction is passivation of Cd(2+) surface sites through sigma-donation for R-An ligands with R = H, Br, OCF(3), and reductive quenching through photoinduced hole transfer for R = MeO, (Me)(2)N.


Journal of Physical Chemistry B | 2010

Charge carrier resolved relaxation of the first excitonic state in CdSe quantum dots probed with near-infrared transient absorption spectroscopy

Eric A. McArthur; Adam J. Morris-Cohen; Kathryn E. Knowles; Emily A. Weiss

This manuscript describes a global regression analysis of near-infrared (NIR, 900-1300 nm) transient absorptions (TA) of colloidal CdSe quantum dots (QDs) photoexcited to their first (1S(e)1S(3/2)) excitonic state. Near-IR TA spectroscopy facilitates charge carrier-resolved analysis of excitonic decay of QDs because signals in the NIR are due exclusively to absorptions of photoexcited electrons and holes, as probe energies in this region are not high enough to induce absorptions across the optical bandgap that crowd the visible TA spectra. The response of each observed component of the excitonic decay to the presence of a hole-trapping ligand (1-octanethiol) and an electron-accepting ligand (1,4-benzoquinone), and comparison of time constants to those for recovery of the ground state bleaching feature in the visible TA spectrum, allow for the assignment of the components to (i) a 1.6 ps hole trapping process, (ii) 19 ps and 274 ps surface-mediated electron trapping processes, and (iii) a ∼5 ns recombination of untrapped electrons.


Chemical Reviews | 2016

Luminescent Colloidal Semiconductor Nanocrystals Containing Copper: Synthesis, Photophysics, and Applications

Kathryn E. Knowles; Kimberly H. Hartstein; Troy B. Kilburn; Arianna Marchioro; Heidi D. Nelson; Patrick J. Whitham; Daniel R. Gamelin

Copper-doped semiconductors are classic phosphor materials that have been used in a variety of applications for many decades. Colloidal copper-doped semiconductor nanocrystals have recently attracted a great deal of interest because they combine the solution processability and spectral tunability of colloidal nanocrystals with the unique photoluminescence properties of copper-doped semiconductor phosphors. Although ternary and quaternary semiconductors containing copper, such as CuInS2 and Cu2ZnSnS4, have been studied primarily in the context of their photovoltaic applications, when synthesized as colloidal nanocrystals, these materials have photoluminescence properties that are remarkably similar to those of copper-doped semiconductor nanocrystals. This review focuses on the luminescent properties of colloidal copper-doped, copper-based, and related copper-containing semiconductor nanocrystals. Fundamental investigations into the luminescence of copper-containing colloidal nanocrystals are reviewed in the context of the well-established luminescence mechanisms of bulk copper-doped semiconductors and copper(I) molecular coordination complexes. The use of colloidal copper-containing nanocrystals in applications that take advantage of their luminescent properties, such as bioimaging, solid-state lighting, and luminescent solar concentrators, is also discussed.


Journal of the American Chemical Society | 2015

Singlet–Triplet Splittings in the Luminescent Excited States of Colloidal Cu+:CdSe, Cu+:InP, and CuInS2 Nanocrystals: Charge-Transfer Configurations and Self-Trapped Excitons

Kathryn E. Knowles; Heidi D. Nelson; Troy B. Kilburn; Daniel R. Gamelin

The electronic and magnetic properties of the luminescent excited states of colloidal Cu(+):CdSe, Cu(+):InP, and CuInS2 nanocrystals were investigated using variable-temperature photoluminescence (PL) and magnetic circularly polarized luminescence (MCPL) spectroscopies. The nanocrystal electronic structures were also investigated by absorption and magnetic circular dichroism (MCD) spectroscopies. By every spectroscopic measure, the luminescent excited states of all three materials are essentially indistinguishable. All three materials show very similar broad PL line widths and large Stokes shifts. All three materials also show similar temperature dependence of their PL lifetimes and MCPL polarization ratios. Analysis shows that this temperature dependence reflects Boltzmann population distributions between luminescent singlet and triplet excited states with average singlet-triplet splittings of ∼1 meV in each material. These similarities lead to the conclusion that the PL mechanism in CuInS2 NCs is fundamentally different from that of bulk CuInS2 and instead is the same as that in Cu(+)-doped NCs, which are known to luminesce via charge-transfer recombination of conduction-band electrons with copper-localized holes. The luminescence of CuInS2 nanocrystals is explained well by invoking exciton self-trapping, in which delocalized photogenerated holes contract in response to strong vibronic coupling at lattice copper sites to form a luminescent excited state that is essentially identical to that of the Cu(+)-doped semiconductor nanocrystals.


Journal of the American Chemical Society | 2012

Dual-time scale photoinduced electron transfer from PbS quantum dots to a molecular acceptor.

Kathryn E. Knowles; Michał Malicki; Emily A. Weiss

A combination of picosecond and microsecond transient absorption dynamics reveals the involvement of two mechanisms by which 1,4-benzoquinone (BQ) induces the decay of the excited state of PbS quantum dots (QDs): (i) electron transfer to BQ molecules adsorbed to the surfaces of PbS QDs and (ii) collisionally gated electron transfer to freely diffusing BQ. Together, these two mechanisms quantitatively describe the quenching of photoluminescence upon addition of BQ to PbS QDs in dichloromethane solution. This work represents the first quantitative study of a QD-ligand system that undergoes both adsorbed and collisionally gated photoinduced charge transfer within the same sample. The availability of a collisionally gated pathway improves the yield of electron transfer from PbS QDs to BQ by an average factor of 2.5 over that for static electron transfer alone.


Accounts of Chemical Research | 2015

Electronic Doping and Redox-Potential Tuning in Colloidal Semiconductor Nanocrystals

Alina M. Schimpf; Kathryn E. Knowles; Gerard M. Carroll; Daniel R. Gamelin

Electronic doping is one of the most important experimental capabilities in all of semiconductor research and technology. Through electronic doping, insulating materials can be made conductive, opening doors to the formation of p-n junctions and other workhorses of modern semiconductor electronics. Recent interest in exploiting the unique physical and photophysical properties of colloidal semiconductor nanocrystals for revolutionary new device technologies has stimulated efforts to prepare electronically doped colloidal semiconductor nanocrystals with the same control as available in the corresponding bulk materials. Despite the impact that success in this endeavor would have, the development of general and reliable methods for electronic doping of colloidal semiconductor nanocrystals remains a long-standing challenge. In this Account, we review recent progress in the development and characterization of electronically doped colloidal semiconductor nanocrystals. Several successful methods for introducing excess band-like charge carriers are illustrated and discussed, including photodoping, outer-sphere electron transfer, defect doping, and electrochemical oxidation or reduction. A distinction is made between methods that yield excess band-like carriers at thermal equilibrium and those that inject excess charge carriers under thermal nonequilibrium conditions (steady state). Spectroscopic signatures of such excess carriers, accessible by both equilibrium and nonequilibrium methods, are reviewed and illustrated. A distinction is also proposed between the phenomena of electronic doping and redox-potential shifting. Electronically doped semiconductor nanocrystals possess excess band-like charge carriers at thermal equilibrium, whereas redox-potential shifting affects the potentials at which charge carriers are injected under nonequilibrium conditions, without necessarily introducing band-like charge carriers at equilibrium. Detection of the key spectroscopic signatures of band-like carriers allows distinction between these two regimes. Both electronic doping and redox-potential shifting can be powerful tools for tuning the performance of nanocrystals in electronic devices. Finally, key chemical challenges associated with nanocrystal electronic doping are briefly discussed. These challenges are centered largely on the availability of charge-carrier reservoirs with suitable redox potentials and on the relatively poor control over nanocrystal surface traps. In most cases, the Fermi levels of colloidal nanocrystals are defined by the redox properties of their surface traps. Control over nanocrystal surface chemistries is therefore essential to the development of general and reliable strategies for electronically doping colloidal semiconductor nanocrystals. Overall, recent progress in this area portends exciting future advances in controlling nanocrystal compositions, surface chemistries, redox potentials, and charge states to yield new classes of electronic nanomaterials with attractive physical properties and the potential to stimulate unprecedented new semiconductor technologies.


Journal of the American Chemical Society | 2011

Surface-amplified ligand disorder in CdSe quantum dots determined by electron and coherent vibrational spectroscopies.

Matthew T. Frederick; Jennifer L. Achtyl; Kathryn E. Knowles; Emily A. Weiss; Franz M. Geiger

This Article reports measurements of the intra- and intermolecular ordering of tight-binding octylphosphonate ligands on the surface of colloidal CdSe quantum dots (QDs) within solid state films, and the dependence of this order on the size of the QDs. The order of the organic ligands, as probed by vibrational sum frequency generation (SFG) spectroscopy, decreases as the radius of the QDs decreases; this decrease is correlated with a decrease in the order of underlying Cd(2+), as detected by X-ray photoelectron spectroscopy (XPS) line width measurements, for radii of the QDs, R > 2.4 nm, and is independent of the disorder of the Cd(2+) for R < 2.4 nm. We believe that, for R < 2.4, the decreasing order of the ligands with decreasing size is due to an increase in the curvature of the QD surfaces. Disorder in the Cd(2+) results from the presence of a shell of Cd(2+)-surfactant complexes that form during synthesis, so this work demonstrates the possibility for chemical control over molecular order within films of colloidal QDs by changing the surfactant mixture.

Collaboration


Dive into the Kathryn E. Knowles's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Philip J. Reid

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Arianna Marchioro

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge