Kathryn Fay Tonissen
Griffith University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kathryn Fay Tonissen.
Molecular Nutrition & Food Research | 2009
Kathryn Fay Tonissen; Giovanna Di Trapani
The thioredoxin (Trx) system is a major antioxidant system integral to maintaining the intracellular redox state. It contains Trx, a redox active protein, which regulates the activity of various enzymes including those that function to counteract oxidative stress within the cell. Trx can also scavenge reactive oxygen species (ROS) and directly inhibits proapoptotic proteins such as apoptosis signal-regulating kinase 1 (ASK1). The oxidized form of Trx is reduced by thioredoxin reductase (TrxR). The cytoplasm and mitochondria contain equivalent Trx systems and inhibition of either system can lead to activation of apoptotic signaling pathways. There are a number of inhibitors with chemotherapy applications that target either Trx or TrxR to induce apoptosis in cancer cells. Suberoylanilide hydroxamic acid (SAHA) is effective against many cancer cells and functions by up-regulating an endogenous inhibitor of Trx. Other compounds target the selenocysteine-containing active site of TrxR. These include gold compounds, platinum compounds, arsenic trioxide, motexafin gadolinium, nitrous compounds, and various flavonoids. Inhibition of TrxR leads to an accumulation of oxidized Trx resulting in cellular conditions that promote apoptosis. In addition, some compounds also convert TrxR to a ROS generating enzyme. The role of Trx system inhibitors in cancer therapy is discussed in this review.
Heredity | 2006
Terje Svingen; Kathryn Fay Tonissen
The Hox family of homeodomain transcription factors regulate numerous pathways during developmental and normal cellular processes. All Hox proteins recognise similar sequences in vitro yet display functional diversity in an in vivo environment. This review focuses on the transcriptional and functional specificity elicited by Hox proteins, giving an overview of homeodomain–DNA interactions and the gain of binding specificity through cooperative binding with cofactors. Furthermore, currently identified mammalian Hox target genes are presented, of which the most striking feature is that very few direct Hox targets have been identified. The direct targets participate in an array of cellular functions including organogenesis and cellular differentiation, cell adhesion and migration and cell cycle and apoptotic pathways. A further assessment of identified mammalian promoter targets and the contribution of bases outside the canonical recognition motif is given, highlighting roles they may play in either trans-activation or repression by Hox proteins.
Gene | 2003
Kelly Bloomfield; Simone Angelique Osborne; Derek Kennedy; Francis Michael Clarke; Kathryn Fay Tonissen
In recent years, redox control has emerged as a fundamental mechanism of gene regulation through transcriptional control. Thioredoxin (Trx) is a dithiol-reducing enzyme known to be involved in the redox regulation of a number of transcription factors, and in this study, we have investigated the redox-dependent regulation of the DNA binding activity of Sp1 by thioredoxin. Electrophoretic mobility shift assays were used to show that both recombinant Sp1 produced in Escherichia coli and endogenous Sp1 expressed by MDA-MB-231 breast cancer cells is subject to redox regulation. We found that thioredoxin alone or in conjunction with the full thioredoxin system (comprising thioredoxin, thioredoxin reductase [TR], and alpha-nicotinamide adenine dinucleotide phosphate [NADPH]) can increase Sp1 DNA binding activity in vitro to an oligonucleotide containing the Sp1 consensus sequence. Furthermore, we have provided evidence that recombinant Sp1 can bind to Sp1 consensus sequences within a 330-base pair (bp) thioredoxin promoter fragment and that this interaction can also be enhanced by the presence of thioredoxin. Luciferase reporter assays using this same minimal thioredoxin promoter region demonstrated that both Sp1 and Sp3 can bind to the promoter and act to enhance transcription. When the three identified Sp1 consensus sequences within the reporter construct were deleted, there was a loss of basal promoter activity, showing that these closely positioned sites are important for regulation of thioredoxin gene expression.
Cancers | 2010
Therese Karlenius; Kathryn Fay Tonissen
Thioredoxin is a small redox-regulating protein, which plays crucial roles in maintaining cellular redox homeostasis and cell survival and is highly expressed in many cancers. The tumor environment is usually under either oxidative or hypoxic stress and both stresses are known up-regulators of thioredoxin expression. These environments exist in tumors because their abnormal vascular networks result in an unstable oxygen delivery. Therefore, the oxygenation patterns in human tumors are complex, leading to hypoxia/re-oxygenation cycling. During carcinogenesis, tumor cells often become more resistant to hypoxia or oxidative stress-induced cell death and most studies on tumor oxygenation have focused on these two tumor environments. However, recent investigations suggest that the hypoxic cycling occurring within tumors plays a larger role in the contribution to tumor cell survival than either oxidative stress or hypoxia alone. Thioredoxin is known to have important roles in both these cellular responses and several studies implicate thioredoxin as a contributor to cancer progression. However, only a few studies exist that investigate the regulation of thioredoxin in the hypoxic and cycling hypoxic response in cancers. This review focuses on the role of thioredoxin in the various states of tumor oxygenation.
Cancer Biology & Therapy | 2003
Terje Svingen; Kathryn Fay Tonissen
Human HOX genes are expressed in a spatio-temporal fashion during embryogenesis and early development where they act as master transcriptional regulators. HOX genes are also expressed in normal adult cells, potentially in a tissue specific manner involving maintenance of the normal phenotype. In selected oncogenic transformations, mis-expression of many HOX genes have been shown, indicating an involvement of these transcriptional regulators in carcinogenesis and metastasis. Utilising quantitative real-time RT-PCR assays, the expression of 20 HOX genes and two known HOX co-factors, PBX1B and MEIS1, were analysed in human melanoma and breast cancer cell lines, comparing results against non-malignant cells. Alterations in HOX gene expression were observed for all malignant cells examined, with some dysregulated transcript levels seemingly random, and the expression of other HOX genes apparently following the same patterns in both skin and breast cancer establishment. Furthermore, HOX gene expression was correlated with the invasive capacity of the cells. The expression of the HOX co-factors PBX1B and MEIS1 showed no marked changes from the non-malignant to the malignant phenotypes, further indicating that it is dysregulated HOX gene expression, rather than dysregulated gene expression of HOX co-factors, that potentially commit the cell to re-differentiate and undergo oncogenic transformation.
Biochimica et Biophysica Acta | 2014
Hye-Jin Hawkes; Therese Karlenius; Kathryn Fay Tonissen
BACKGROUND The thioredoxin system maintains redox balance through the action of thioredoxin and thioredoxin reductase. Thioredoxin regulates the activity of various substrates, including those that function to counteract cellular oxidative stress. These include the peroxiredoxins, methionine sulfoxide reductase A and specific transcription factors. Of particular relevance is Redox Factor-1, which in turn activates other redox-regulated transcription factors. SCOPE OF REVIEW Experimentally defined transcription factor binding sites in the human thioredoxin and thioredoxin reductase gene promoters together with promoters of the major thioredoxin system substrates involved in regulating cellular redox status are discussed. An in silico approach was used to identify potential putative binding sites for these transcription factors in all of these promoters. MAJOR CONCLUSIONS Our analysis reveals that many redox gene promoters contain the same transcription factor binding sites. Several of these transcription factors are in turn redox regulated. The ARE is present in several of these promoters and is bound by Nrf2 during various oxidative stress stimuli to upregulate gene expression. Other transcription factors also bind to these promoters during the same oxidative stress stimuli, with this redundancy supporting the importance of the antioxidant response. Putative transcription factor sites were identified in silico, which in combination with specific regulatory knowledge for that gene promoter may inform future experiments. GENERAL SIGNIFICANCE Redox proteins are involved in many cellular signalling pathways and aberrant expression can lead to disease or other pathological conditions. Therefore understanding how their expression is regulated is relevant for developing therapeutic agents that target these pathways.
Redox biology | 2016
Maneet Bhatia; Kelly L. McGrath; Giovanna Di Trapani; Pornpimol Charoentong; Fenil Shah; Mallory M. King; Kathryn Fay Tonissen
Metastasis is the most life threatening aspect of breast cancer. It is a multi-step process involving invasion and migration of primary tumor cells with a subsequent colonization of these cells at a secondary location. The aim of the present study was to investigate the role of thioredoxin (Trx1) in the invasion and migration of breast cancer cells and to assess the strength of the association between high levels of Trx1 and thioredoxin reductase (TrxR1) expression with breast cancer patient survival. Our results indicate that the expression of both Trx1 and TrxR1 are statistically significantly increased in breast cancer patient cells compared with paired normal breast tissue from the same patient. Over-expression of Trx1 in MDA-MB-231 breast cancer cell lines enhanced cell invasion in in vitro assays while expression of a redox inactive mutant form of Trx1 (designated 1SS) or the antisense mRNA inhibited cell invasion. Addition of exogenous Trx1 also enhanced cell invasion, while addition of a specific monoclonal antibody that inhibits Trx1 redox function decreased cell invasion. Over-expression of intracellular Trx1 did not increase cell migration but expression of intracellular 1SS inhibited migration. Addition of exogenous Trx1 enhanced cell migration while 1SS had no effect. Treatment with auranofin inhibited TrxR activity, cell migration and clonogenic activity of MDA-MB-231 cells, while increasing reactive oxygen species (ROS) levels. Analysis of 25 independent cohorts with 5910 patients showed that Trx1 and TrxR1 were both associated with a poor patient prognosis in terms of overall survival, distant metastasis free survival and disease free survival. Therefore, targeting the Trx system with auranofin or other specific inhibitors may provide improved breast cancer patient outcomes through inhibition of cancer invasion and migration.
FEBS Letters | 2011
Antonietta R. Farina; Lucia Cappabianca; Giuseppina DeSantis; Natalia Di Ianni; Pierdomenico Ruggeri; Marzia Ragone; Stefania Merolle; Kathryn Fay Tonissen; Alberto Gulino; Andrew R. Mackay
Increased expression of thioredoxin (Trx)‐1 and matrix metalloproteinase (MMP)‐9 associates with malignant breast cancer progression. Here, we describe a functional relationship between Trx‐1 and MMP‐9 in promoting MDA‐MB‐231 breast cancer cell invasive behaviour. Trx‐1 overexpression stimulated MMP‐9 expression, de‐regulated the MMP‐9/TIMP‐1 equilibrium and augmented MMP‐9 involvement in a more invasive phenotype. Trx‐1 augmented MMP‐9 transcription through NF‐κB, AP‐1 and SP1 elements; stimulated p50/p65 NF‐κB activity and recruitment to the MMP‐9 promoter; and facilitated MMP‐9 promoter‐accessibility to NF‐κB by preventing HDAC recruitment and maintaining MMP‐9 promoter histone acetylation. Our data provide a functional basis for Trx‐1 and MMP‐9 association in malignant breast cancer and identify Trx‐1 and NF‐κB as potentially druggable targets for reducing MMP‐9 involvement in malignant behaviour.
Biochemical and Biophysical Research Communications | 2012
Therese Karlenius; Fenil Shah; Giovanna Di Trapani; Kathryn Fay Tonissen
The thioredoxin system is a key cellular antioxidant system and is highly expressed in cancer cells, especially in more aggressive and therapeutic resistant tumors. We analysed the expression of the thioredoxin system in the MDA-MB-231 breast cancer cell line under conditions mimicking the tumor oxygen microenvironment. We grew breast cancer cells in either prolonged hypoxia or hypoxia followed by various lengths of reoxygenation and in each case cells were cultured with or without a hypoxic cycling preconditioning (PC) phase preceding the hypoxic growth. Flow cytometry-based assays were used to measure reactive oxygen species (ROS) levels. Cells grown in hypoxia showed a significant decrease in ROS levels compared to normoxic cells, while a significant increase in ROS levels over normoxic cells was observed after 4 h of reoxygenation. The PC pre-treatment did not have a significant effect on ROS levels. Thioredoxin levels were also highest after 4 h of reoxygenation, however cells subjected to PC pre-treatment displayed even higher thioredoxin levels. The high level of intracellular thioredoxin was also reflected on the cell surface. Reporter assays showed that activity of the thioredoxin and thioredoxin reductase gene promoters was also highest in the reoxygenation phase, although PC pre-treatment did not result in a significant increase over non-PC treated cells. The use of a dominant negative Nrf-2 negated the increased thioredoxin promoter activity during reoxygenation. This data suggests that the high levels of thioredoxin observed in tumors may arise due to cycling between hypoxia and reoxygenation.
BioTechniques | 2011
Therese Karlenius; Fenil Shah; Wei-Che Yu; Hye-Jin Hawkes; Ujang Tinggi; Francis Michael Clarke; Kathryn Fay Tonissen
Cell Culture The MDA-MB-231 breast cancer cell line (see Reference 24 in the main text) was cultured in RPMI 1640 medium (Invitrogen, Melbourne, Australia), supplemented with either 10% FBS [either Invitrogen, Lonza (Melbourne, Australia), Quantum (Brisbane, Australia), or 10% serum supreme (Lonza) and 100 μg/mL penicillin (Invitrogen) and 100 μg/mL streptomycin (Invitrogen) in 5% CO2 at 37°C. Media used in transfections did not contain penicillin or streptomycin. All chemicals were purchased from SigmaAldrich (Castle Hill, Australia) unless otherwise specified.