Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kathryn L. Gatford is active.

Publication


Featured researches published by Kathryn L. Gatford.


Endocrinology | 2008

Impaired β-Cell Function and Inadequate Compensatory Increases in β-Cell Mass after Intrauterine Growth Restriction in Sheep

Kathryn L. Gatford; Saidatul N. B. Mohammad; M. Lyn Harland; Miles J. De Blasio; Abigail L. Fowden; Jeffrey S. Robinson; Julie A. Owens

Poor growth before birth increases the risk of non-insulin-dependent diabetes mellitus (NIDDM) and impairs insulin secretion relative to sensitivity. We investigated the effects of intrauterine growth restriction in sheep on insulin secretion, beta-cell mass, and function from before birth to young adulthood and its molecular basis. Pancreas was collected from control and placentally restricted sheep as fetuses (d 143 gestation), lambs (aged 42 d), and young adults (aged 556 d), following independent measures of in vivo insulin secretion and sensitivity. beta-Cells and islets were counted after immunohistochemical staining for insulin. In lambs, gene expression was measured by RT-PCR and expressed relative to 18S. beta-Cell mass correlated positively with fetal weight but negatively with birth weight in adult males. Glucose-stimulated insulin disposition and beta-cell function correlated negatively with fetal weight but positively with birth weight in adult males. Placental restriction increased pancreatic expression of IGF-II and IGF-I but decreased that of voltage-gated calcium channel, alpha1D subunit (CACNA1D) in lambs. In male lambs, pancreatic IGF-II and insulin receptor expression correlated strongly and positively with beta-cell mass and CACNA1D expression with glucose-stimulated insulin disposition. Restricted growth before birth in the sheep does not impair insulin secretion, relative to sensitivity, before birth or in young offspring. IGF-II and insulin receptor are implicated as key molecular regulators of beta-cell mass compensation, whereas impaired expression of the voltage-gated calcium channel may underlie impaired beta-cell function after intrauterine growth restriction. With aging, the insulin secretory capacity of the beta-cell is impaired in males, and their increases in beta-cell mass are inadequate to maintain adequate insulin secretion relative to sensitivity.


The Journal of Physiology | 2007

Restriction of placental growth in sheep impairs insulin secretion but not sensitivity before birth

Julie A. Owens; Kathryn L. Gatford; Miles J. De Blasio; L. J. Edwards; I. Caroline McMillen; Abigail L. Fowden

Restricted growth before birth is associated with impaired insulin secretion but with initially enhanced insulin sensitivity in early postnatal life, which then progresses to insulin resistance and impaired glucose homeostasis by adulthood. This suggests that prenatal restraint impairs insulin secretion, but increases insulin sensitivity, before birth. Poor placental growth and function are major causes of restricted fetal growth in humans. We have therefore investigated the effects of restricted placental growth and function on plasma glucose, α‐amino nitrogen and insulin concentrations and glucose‐ and arginine‐stimulated insulin secretion in the fetal sheep at 120 and 140 days gestational age, and on insulin sensitivity, measured by hyperinsulinaemic euglycaemic clamp, at 130 days gestational age. Placental restriction decreased fetal blood pH and oxygen content, and weight in late gestation by ∼20%. Reduced fetal and placental weights and indices of poor placental function, in particular fetal hypoxia and hypoglycaemia, were associated with impaired glucose‐ and arginine‐stimulated insulin secretion, but not with changes in insulin sensitivity in the fetal sheep. We conclude that the impaired insulin secretion capacity reported in children and adults after intrauterine growth restriction, and in the neonatal and young adult sheep which is small at birth, is present in utero and persists. Whether this reflects the actions of the adverse intrauterine environment or changes to intrinsic capacity is unclear, but in utero interventions may be necessary to improve postnatal insulin secretion in the infant who is growth‐restricted before birth.


Placenta | 2010

Review: Placental Programming of Postnatal Diabetes and Impaired Insulin Action after IUGR

Kathryn L. Gatford; Rebecca A. Simmons; M. J. De Blasio; Jeffrey S. Robinson; Julie A. Owens

Being born small due to poor growth before birth increases the risk of developing metabolic disease, including type 2 diabetes, in later life. Inadequate insulin secretion and decreasing insulin sensitivity contribute to this increased diabetes risk. Impaired placental growth, development and function are major causes of impaired fetal growth and development and therefore of IUGR. Restricted placental growth (PR) and function in non-human animals induces similar changes in insulin secretion and sensitivity as in human IUGR, making these valuable tools to investigate the underlying mechanisms and to test interventions to prevent or ameliorate the risk of disease after IUGR. Epigenetic changes induced by an adverse fetal environment are strongly implicated as causes of later impaired insulin action. These have been well-characterised in the PR rat, where impaired insulin secretion is linked to epigenetic changes at the Pdx-1 promotor and reduced expression of this transcription factor. Present research is particularly focussed on developing intervention strategies to prevent or reverse epigenetic changes, and normalise gene expression and insulin action after PR, in order to translate this to treatments to improve outcomes in human IUGR.


Animal Reproduction Science | 2010

Nutrient intake in the bovine during early and mid-gestation causes sex-specific changes in progeny plasma IGF-I, liveweight, height and carcass traits

G.C. Micke; T.M. Sullivan; Kathryn L. Gatford; Julie A. Owens; V.E.A. Perry

Fetal and postnatal growth are mediated by insulin-like growth factors (IGFs) and their binding proteins (IGFBPs). Maternal nutrient intake during gestation can program the postnatal IGF-axis. This may have significant economic implications for beef cattle production. We investigated the effect of high (H=240%) and low (L=70%) levels of recommended daily crude protein (CP) intake for heifers during the first and second trimesters of gestation in a two-by-two factorial design on progeny (n=68) plasma IGF-I, IGF-II, total IGFBP (tIGFBP), postnatal growth and carcass traits. Calves were heavier at birth following high CP diets during the second trimester (P=0.03) and this persisted to 29d. Plasma IGF-I concentrations of males were greater for HL compared to LL (P<0.01) and HH (P>0.04) from 29 to 657d, and for LH compared to LL from 29 until 379d (P=0.02). Exposure to low CP diets during the first trimester resulted in heavier males from 191d onwards (P=0.04) but a tendency for lighter females from 552d onwards (P=0.07) that had lighter carcass weights (P=0.04). Longissimus dorsi cross-sectional area of all carcasses was greater following exposure to low CP diets during the second trimester (P=0.04). Heifer nutrient intake during the first and second trimesters causes persistent and sex-specific programming of progeny plasma IGF-I, postnatal liveweight and carcass weight. Refining heifer nutritional programs during early gestation may optimize production objectives in progeny.


British Journal of Nutrition | 2003

Variable maternal nutrition and growth hormone treatment in the second quarter of pregnancy in pigs alter semitendinosus muscle in adolescent progeny

Kathryn L. Gatford; Jason E. Ekert; Karina Blackmore; Miles J. De Blasio; Jodie M. Boyce; Julie A. Owens; Roger G. Campbell; P. C. Owens

Maternal nutrition and growth hormone (GH) treatment during early- to mid-pregnancy can each alter the subsequent growth and differentiation of muscle in progeny. We have investigated the effects of varying maternal nutrition and maternal treatment with porcine (p) GH during the second quarter of pregnancy in gilts on semitendinosus muscle cross-sectional area and fibre composition of progeny, and relationships between maternal and progeny measures and progeny muscularity. Fifty-three Large White x Landrace gilts, pregnant to Large White x Duroc boars, were fed either 2.2 kg (about 35 % ad libitum intake) or 3.0 kg commercial ration (13.5 MJ digestible energy, 150 g crude protein (N x 6.25)/kg DM)/d and injected with 0, 4 or 8 mg pGH/d from day 25 to 50 of pregnancy, then all were fed 2.2 kg/d for the remainder of pregnancy. The higher maternal feed allowance from day 25 to 50 of pregnancy increased the densities of total and secondary fibres and the secondary:primary fibre ratio in semitendinosus muscles of their female progeny at 61 d of age postnatally. The densities of secondary and total muscle fibres in semitendinosus muscles of progeny were predicted by maternal weight before treatment and maternal plasma insulin-like growth factor-II during treatment. Maternal pGH treatment from day 25 to day 50 of pregnancy did not alter fibre densities, but increased the cross-sectional area of the semitendinosus muscle; this may be partially explained by increased maternal plasma glucose. Thus, maternal nutrition and pGH treatment during the second quarter of pregnancy in pigs independently alter muscle characteristics in progeny.


Endocrinology | 2012

Placental Restriction Reduces Insulin Sensitivity and Expression of Insulin Signaling and Glucose Transporter Genes in Skeletal Muscle, But Not Liver, in Young Sheep

Miles J. De Blasio; Kathryn L. Gatford; M. Lyn Harland; Jeffrey S. Robinson; Julie A. Owens

Poor growth before birth is associated with impaired insulin sensitivity later in life, increasing the risk of type 2 diabetes. The tissue sites at which insulin resistance first develops after intrauterine growth restriction (IUGR), and its molecular basis, are unclear. We have therefore characterized the effects of placental restriction (PR), a major cause of IUGR, on whole-body insulin sensitivity and expression of molecular determinants of insulin signaling and glucose uptake in skeletal muscle and liver of young lambs. Whole-body insulin sensitivity was measured at 30 d by hyperinsulinaemic euglycaemic clamp and expression of insulin signaling genes (receptors, pathways, and targets) at 43 d in muscle and liver of control (n = 15) and PR (n = 13) lambs. PR reduced size at birth and increased postnatal growth, fasting plasma glucose (+15%, P = 0.004), and insulin (+115%, P = 0.009). PR reduced whole-body insulin sensitivity (-43%, P < 0.001) and skeletal muscle expression of INSR (-36%), IRS1 (-28%), AKT2 (-44%), GLUT4 (-88%), GSK3α (-35%), and GYS1 (-31%) overall (each P < 0.05) and decreased AMPKγ3 expression in females (P = 0.030). PR did not alter hepatic expression of insulin signaling and related genes but increased GLUT2 expression (P = 0.047) in males. Whole-body insulin sensitivity correlated positively with skeletal muscle expression of IRS1, AKT2, HK, AMPKγ2, and AMPKγ3 in PR lambs only (each P < 0.05) but not with hepatic gene expression in control or PR lambs. Onset of insulin resistance after PR and IUGR is accompanied by, and can be accounted for by, reduced expression of insulin signaling and metabolic genes in skeletal muscle but not liver.


American Journal of Physiology-endocrinology and Metabolism | 2008

Repeated betamethasone treatment of pregnant sheep programs persistent reductions in circulating IGF-I and IGF-binding proteins in progeny.

Kathryn L. Gatford; Julie A. Owens; Shaofu Li; Timothy J. M. Moss; John P. Newnham; John R. G. Challis; Deborah M. Sloboda

Exposure to synthetic glucocorticoids in utero markedly improves survival after preterm birth, but repeated exposures impair fetal and postnatal growth and are associated with evidence of insulin resistance in later life. The insulin-like growth factor (IGF) axis is an important regulator of growth and metabolism before and after birth. We have therefore investigated the effects of repeated maternal betamethasone injections on plasma IGF-I, IGF-II, and IGF-binding proteins (IGFBP) in fetal and postnatal progeny in the sheep. Pregnant sheep carrying male fetuses were injected with saline or betamethasone at 104, 111, and 118 days of gestation (dG, term approximately 150 dG). Plasma samples were collected postmortem from fetuses before (75, 84, 101 dG) or after one (109 dG), two (116 dG), or three (121-122, 132-133, 145-147 dG) doses of saline or betamethasone and from progeny at 42 and 84 days of age. Fetal weight was reduced after two or more maternal betamethasone injections, and this effect persisted to term. Repeated betamethasone exposures reduced plasma IGF-I and total IGFBP in fetuses at 133 dG and progeny at 84 days, and reduced plasma IGFBP-3 at 84 days. Fetal plasma IGF-II tended to increase transiently at 109 dG following the first betamethasone injection. Fetal, placental, and/or postnatal weights correlated positively with concomitant plasma IGF-I, IGF-II, and total IGFBP. We conclude that repeated exposure to synthetic glucocorticoids in utero programs the IGF axis before and after birth, which may contribute to the adverse effects of betamethasone exposure on growth and metabolism.


Diabetes Care | 2013

Maternal and Neonatal Circulating Markers of Metabolic and Cardiovascular Risk in the Metformin in Gestational Diabetes (MiG) Trial: Responses to maternal metformin versus insulin treatment

Helen L. Barrett; Kathryn L. Gatford; Candice M. Houda; Miles J. De Blasio; H. David McIntyre; Leonie K. Callaway; Marloes Dekker Nitert; Suzette Coat; Julie A. Owens; William M. Hague; Janet Rowan

OBJECTIVE This study was designed to compare glucose, lipids, and C-reactive protein (CRP) in women with gestational diabetes mellitus treated with metformin or insulin and in cord plasma of their offspring and to examine how these markers relate to infant size at birth. RESEARCH DESIGN AND METHODS Women with gestational diabetes mellitus were randomly assigned to metformin or insulin in the Metformin in Gestational Diabetes trial. Fasting maternal plasma glucose, lipids, and CRP were measured at randomization, 36 weeks’ gestation, and 6–8 weeks postpartum as well as in cord plasma. Women with available cord blood samples (metformin n = 236, insulin n = 242) were included. RESULTS Maternal plasma triglycerides increased more from randomization to 36 weeks’ gestation in women treated with metformin (21.93%) versus insulin (9.69%, P < 0.001). Maternal and cord plasma lipids, CRP, and neonatal anthropometry did not differ between treatments. In logistic regression analyses adjusted for confounders, the strongest associations with birth weight >90th centile were maternal triglycerides and measures of glucose control at 36 weeks. CONCLUSIONS There were few differences in circulating maternal and neonatal markers of metabolic status and no differences in measures of anthropometry between the offspring of women treated with metformin and the offspring of women treated with insulin. There may be subtle effects of metformin on maternal lipid function, but the findings suggest that treating gestational diabetes mellitus with metformin does not adversely affect lipids or CRP in cord plasma or neonatal anthropometric measures.


Journal of Animal Science | 2009

Dietary protein during gestation affects maternal insulin-like growth factor, insulin-like growth factor binding protein, leptin concentrations, and fetal growth in heifers

T. M. Sullivan; G. C. Micke; Nr Perkins; Graeme Martin; C. R. Wallace; Kathryn L. Gatford; Julie A. Owens; V.E.A. Perry

The influence of supplemental protein during gestation on maternal hormones and fetal growth was determined in composite beef heifers. At AI, 118 heifers were stratified by BW within each composite genotype (BeefX = 1/2 Senepol, 1/4 Brahman, 1/8 Charolais, 1/8 Red Angus and CBX = 1/2 Senepol, 1/4 Brahman, 1/4 Charolais) into 4 treatment groups: high high (HH = 1.4 kg CP/d for first and second trimesters of gestation), high low (HL = 1.4 kg of CP/d for first trimester and 0.4 kg of CP/d for second trimester), low high (lowH = 0.4 kg CP/d for first trimester and 1.4 kg of CP/d and for second trimester), or low low (LL = 0.4 kg CP/d for first and second trimesters). Maternal plasma IGF-I and -II, total IGFBP, and leptin concentrations were determined at 14 d before AI and at d 28, 82, 179, and 271 post-AI (mean gestation length 286 d), and leptin concentrations were also determined at calving. Increased dietary protein increased maternal plasma IGF-I (P < 0.001 on d 28, 82, and 179), IGF-II (P = 0.01 on d 82; P = 0.04 on d 271), and total IGFBP (P = 0.002 on d 82; P = 0.005 on d 179; P = 0.03 on d 271). Maternal plasma IGF-I at d 271 was negatively associated with calf crown-rump length at birth (P = 0.003). BeefX had greater birth weight calves (P = 0.01), greater IGF-II (P < 0.001), increased ratios of IGF-I:total IGFBP (P = 0.008) and IGF-II:total IGFBP (P < 0.001), and reduced total IGFBP compared with CBX (P = 0.02). Increased dietary protein during second trimester increased maternal plasma leptin at calving (P = 0.005). Maternal plasma leptin near term was positively associated with heifer BCS (P = 0.02) and with calf birth weight (P = 0.04), and at calving was positively associated with heifer age at AI (P = 0.02). These findings suggest that maternal dietary protein, age, and genotype influence plasma concentrations of metabolic hormones and fetal growth in Bos indicus-influenced heifers.


American Journal of Physiology-endocrinology and Metabolism | 2009

Effects of intrafetal IGF-I on growth of cardiac myocytes in late-gestation fetal sheep

Eugenie R. Lumbers; Min-young Kim; Judith H Burrell; Vasumathy Kumarasamy; Amanda C. Boyce; Karen J. Gibson; Kathryn L. Gatford; Julie A. Owens

Intrafetal insulin-like growth factor (IGF)-I promotes cardiac hypertrophy in the late-gestation fetal sheep; whether these effects are sustained is unknown. IGF-I was infused for 4 days at 80 microg/h from 121 to 125 days of gestation, and its effects at 128 days, 3 days after the infusion stopped, were determined by comparison with untreated fetal sheep. After IGF-I treatment, fetal weights were similar to those in control fetuses but kidney weights were bigger (P < 0.05), as were spleen weights of male fetuses (P < 0.05). Cardiac myocytes were larger in female than male fetal sheep (P < 0.001). IGF-I increased male (P < 0.001) but not female myocyte volumes. IGF-I did not alter the proportions of uni- or binucleated right or left ventricular myocytes. Female fetal sheep had a greater proportion of binucleated cardiac myocytes than males (P < 0.05). IGF-I-treated fetuses had a slightly greater proportion of right ventricular nuclei in cell cycle phase G(2)/M and a reduced proportion of G(0)/G(1) phase nuclei (P < 0.1). Therefore, evidence for IGF-I-stimulated cardiac cell hyperplasia in fetal sheep in late gestation was limited. In conclusion, the greater sizes and larger proportion of binucleated cardiac myocytes in female fetal sheep suggest that myocyte maturation may occur earlier in females than in males. This may explain in part the male sex-specific responsiveness of cardiac hypertrophy to IGF-I in late gestation. If IGF-I-stimulated cardiomyocyte growth is accompanied by maturation of contractile function, IGF-I may be a potential therapeutic agent for maintaining cardiac output in preterm males.

Collaboration


Dive into the Kathryn L. Gatford's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

P. C. Owens

University of Adelaide

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge