Kathryn L. Mills
University of Oregon
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kathryn L. Mills.
Annual Review of Psychology | 2014
Sarah-Jayne Blakemore; Kathryn L. Mills
Adolescence is a period of formative biological and social transition. Social cognitive processes involved in navigating increasingly complex and intimate relationships continue to develop throughout adolescence. Here, we describe the functional and structural changes occurring in the brain during this period of life and how they relate to navigating the social environment. Areas of the social brain undergo both structural changes and functional reorganization during the second decade of life, possibly reflecting a sensitive period for adapting to ones social environment. The changes in social environment that occur during adolescence might interact with increasing executive functions and heightened social sensitivity to influence a number of adolescent behaviors. We discuss the importance of considering the social environment and social rewards in research on adolescent cognition and behavior. Finally, we speculate about the potential implications of this research for society.
Frontiers in Systems Neuroscience | 2013
Damien A. Fair; Joel T. Nigg; Swathi Iyer; Deepti Bathula; Kathryn L. Mills; Nico U.F. Dosenbach; Bradley L. Schlaggar; Maarten Mennes; David Gutman; Saroja Bangaru; Jan K. Buitelaar; Daniel P. Dickstein; Adriana Di Martino; David N. Kennedy; Clare Kelly; Beatriz Luna; Julie B. Schweitzer; Katerina Velanova; Yu Feng Wang; Stewart H. Mostofsky; F. Xavier Castellanos; Michael P. Milham
In recent years, there has been growing enthusiasm that functional magnetic resonance imaging (MRI) could achieve clinical utility for a broad range of neuropsychiatric disorders. However, several barriers remain. For example, the acquisition of large-scale datasets capable of clarifying the marked heterogeneity that exists in psychiatric illnesses will need to be realized. In addition, there continues to be a need for the development of image processing and analysis methods capable of separating signal from artifact. As a prototypical hyperkinetic disorder, and movement-related artifact being a significant confound in functional imaging studies, ADHD offers a unique challenge. As part of the ADHD-200 Global Competition and this special edition of Frontiers, the ADHD-200 Consortium demonstrates the utility of an aggregate dataset pooled across five institutions in addressing these challenges. The work aimed to (1) examine the impact of emerging techniques for controlling for “micro-movements,” and (2) provide novel insights into the neural correlates of ADHD subtypes. Using support vector machine (SVM)-based multivariate pattern analysis (MVPA) we show that functional connectivity patterns in individuals are capable of differentiating the two most prominent ADHD subtypes. The application of graph-theory revealed that the Combined (ADHD-C) and Inattentive (ADHD-I) subtypes demonstrated some overlapping (particularly sensorimotor systems), but unique patterns of atypical connectivity. For ADHD-C, atypical connectivity was prominent in midline default network components, as well as insular cortex; in contrast, the ADHD-I group exhibited atypical patterns within the dlPFC regions and cerebellum. Systematic motion-related artifact was noted, and highlighted the need for stringent motion correction. Findings reported were robust to the specific motion correction strategy employed. These data suggest that resting-state functional connectivity MRI (rs-fcMRI) data can be used to characterize individual patients with ADHD and to identify neural distinctions underlying the clinical heterogeneity of ADHD.
Biological Psychiatry | 2010
Damien A. Fair; Jonathan Posner; Bonnie J. Nagel; Deepti Bathula; Taciana G. Costa Dias; Kathryn L. Mills; Michael S. Blythe; Aishat Giwa; Colleen F. Schmitt; Joel T. Nigg
BACKGROUND Attention-deficit/hyperactivity disorder (ADHD) is a major public health concern. It has been suggested that the brains default network may provide a crucial avenue for understanding the neurobiology of attention deficit/hyperactivity disorder. Evaluations of the default network have increased over recent years with the applied technique of resting-state functional connectivity magnetic resonance imaging (rs-fcMRI). These investigations have established that spontaneous activity in this network is highly correlated at rest in young adult populations. This coherence seems to be reduced in adults with ADHD. This is an intriguing finding, as coherence in spontaneous activity within the default network strengthens with age. Thus, the pathophysiology of ADHD might include delayed or disrupted maturation of the default network. If so, it is important to determine whether an altered developmental picture can be detected using rs-fcMRI in children with ADHD. METHODS This study used the typical developmental context provided previously by Fair et al. (2008) to examine coherence of brain activity within the default network using rs-fcMRI in children with (n = 23) and without attention deficit/hyperactivity disorder (n = 23). RESULTS We found that functional connections previously shown as developmentally dynamic in the default network were atypical in children with attention deficit/hyperactivity disorder-consistent with perturbation or failure of the maturational processes. CONCLUSIONS These findings are consistent with the hypothesis that atypical consolidation of this network over development plays a role in attention deficit/hyperactivity disorder.
NeuroImage | 2014
Anne-Lise Goddings; Kathryn L. Mills; Liv Clasen; Jay N. Giedd; Russell M. Viner; Sarah-Jayne Blakemore
Puberty is characterized by hormonal, physical and psychological transformation. The human brain undergoes significant changes between childhood and adulthood, but little is known about how puberty influences its structural development. Using a longitudinal sample of 711 magnetic resonance imaging scans from 275 individuals aged 7–20 years, we examined how subcortical brain regions change in relation to puberty. Our regions of interest included the amygdala, hippocampus and corpus striatum including the nucleus accumbens (NA), caudate, putamen and globus pallidus (GP). Pubertal development was significantly related to structural volume in all six regions in both sexes. Pubertal development and age had both independent and interactive influences on volume for the amygdala, hippocampus and putamen in both sexes, and the caudate in females. There was an interactive puberty-by-age effect on volume for the NA and GP in both sexes, and the caudate in males. These findings suggest a significant role for puberty in structural brain development.
Biology of Sex Differences | 2012
Jay N. Giedd; Armin Raznahan; Kathryn L. Mills; Rhoshel Lenroot
Improvements in neuroimaging technologies, and greater access to their use, have generated a plethora of data regarding male/female differences in the developing brain. Examination of these differences may shed light on the pathophysiology of the many illnesses that differ between the sexes and ultimately lead to more effective interventions. In this review, we attempt to synthesize the anatomic magnetic resonance imaging (MRI) literature of male/female brain differences with emphasis on studies encompassing adolescence – a time of divergence in physical and behavioral characteristics. Across all ages total brain size is consistently reported to be about 10% larger in males. Structures commonly reported to be different between sexes include the caudate nucleus, amygdala, hippocampus, and cerebellum – all noted to have a relatively high density of sex steroid receptors. The direction and magnitude of reported brain differences depends on the methodology of data acquisition and analysis, whether and how the subcomponents are adjusted for the total brain volume difference, and the age of the participants in the studies. Longitudinal studies indicate regional cortical gray matter volumes follow inverted U shaped developmental trajectories with peak size occurring one to three years earlier in females. Cortical gray matter differences are modulated by androgen receptor genotyope and by circulating levels of hormones. White matter volumes increase throughout childhood and adolescence in both sexes but more rapidly in adolescent males resulting in an expanding magnitude of sex differences from childhood to adulthood.
Developmental Cognitive Neuroscience | 2014
Kathryn L. Mills; Christian K. Tamnes
Highlights • There have now been several longitudinal studies of structural brain development.• We discuss current methods and analysis techniques in longitudinal MRI.• We relate MRI measures to possible underlying physiological mechanisms.• We encourage more open discussion amongst researchers regarding best practices.
Frontiers in Systems Neuroscience | 2010
Damien A. Fair; Deepti Bathula; Kathryn L. Mills; Taciana G. Costa Dias; Michael S. Blythe; Dongyang Zhang; Abraham Z. Snyder; Marcus E. Raichle; Alexander A. Stevens; Joel T. Nigg; Bonnie J. Nagel
Recent years have witnessed a surge of investigations examining functional brain organization using resting-state functional connectivity MRI (rs-fcMRI). To date, this method has been used to examine systems organization in typical and atypical developing populations. While the majority of these investigations have focused on cortical–cortical interactions, cortical–subcortical interactions also mature into adulthood. Innovative work by Zhang et al. (2008) in adults have identified methods that utilize rs-fcMRI and known thalamo-cortical topographic segregation to identify functional boundaries in the thalamus that are remarkably similar to known thalamic nuclear grouping. However, despite thalamic nuclei being well formed early in development, the developmental trajectory of functional thalamo-cortical relations remains unexplored. Thalamic maps generated by rs-fcMRI are based on functional relationships, and should modify with the dynamic thalamo-cortical changes that occur throughout maturation. To examine this possibility, we employed a strategy as previously described by Zhang et al. to a sample of healthy children, adolescents, and adults. We found strengthening functional connectivity of the cortex with dorsal/anterior subdivisions of the thalamus, with greater connectivity observed in adults versus children. Temporal lobe connectivity with ventral/midline/posterior subdivisions of the thalamus weakened with age. Changes in sensory and motor thalamo-cortical interactions were also identified but were limited. These findings are consistent with known anatomical and physiological cortical–subcortical changes over development. The methods and developmental context provided here will be important for understanding how cortical–subcortical interactions relate to models of typically developing behavior and developmental neuropsychiatric disorders.
European Neuropsychopharmacology | 2013
Taciana G. Costa Dias; Vanessa B. Wilson; Deepti Bathula; Swathi Iyer; Kathryn L. Mills; Bria L. Thurlow; Corinne A. Stevens; Erica D. Musser; Samuel D. Carpenter; David S. Grayson; Suzanne H. Mitchell; Joel T. Nigg; Damien A. Fair
Attention-deficit/hyperactivity disorder (ADHD) is a prevalent psychiatric disorder that has poor long-term outcomes and remains a major public health concern. Recent theories have proposed that ADHD arises from alterations in multiple neural pathways. Alterations in reward circuits are hypothesized as one core dysfunction, leading to altered processing of anticipated rewards. The nucleus accumbens (NAcc) is particularly important for reward processes; task-based fMRI studies have found atypical activation of this region while the participants performed a reward task. Understanding how reward circuits are involved with ADHD may be further enhanced by considering how the NAcc interacts with other brain regions. Here we used the technique of resting-state functional connectivity MRI (rs-fcMRI) to examine the alterations in the NAcc interactions and how they relate to impulsive decision making in ADHD. Using rs-fcMRI, this study: examined differences in functional connectivity of the NAcc between children with ADHD and control children; correlated the functional connectivity of NAcc with impulsivity, as measured by a delay discounting task; and combined these two initial segments to identify the atypical NAcc connections that were associated with impulsive decision making in ADHD. We found that functional connectivity of NAcc was atypical in children with ADHD and the ADHD-related increased connectivity between NAcc and the prefrontal cortex was associated with greater impulsivity (steeper delayed-reward discounting). These findings are consistent with the hypothesis that atypical signaling of the NAcc to the prefrontal cortex in ADHD may lead to excessive approach and failure in estimating future consequences; thus, leading to impulsive behavior.
Proceedings of the National Academy of Sciences of the United States of America | 2011
Benjamin J. Shannon; Marcus E. Raichle; Abraham Z. Snyder; Damien A. Fair; Kathryn L. Mills; Dongyang Zhang; Kevin Bache; Vince D. Calhoun; Joel T. Nigg; Bonnie J. Nagel; Alexander A. Stevens; Kent A. Kiehl
Teenagers are often impulsive. In some cases this is a phase of normal development; in other cases impulsivity contributes to criminal behavior. Using functional magnetic resonance imaging, we examined resting-state functional connectivity among brain systems and behavioral measures of impulsivity in 107 juveniles incarcerated in a high-security facility. In less-impulsive juveniles and normal controls, motor planning regions were correlated with brain networks associated with spatial attention and executive control. In more-impulsive juveniles, these same regions correlated with the default-mode network, a constellation of brain areas associated with spontaneous, unconstrained, self-referential cognition. The strength of these brain–behavior relationships was sufficient to predict impulsivity scores at the individual level. Our data suggest that increased functional connectivity of motor-planning regions with networks subserving unconstrained, self-referential cognition, rather than those subserving executive control, heightens the predisposition to impulsive behavior in juvenile offenders. To further explore the relationship between impulsivity and neural development, we studied functional connectivity in the same motor-planning regions in 95 typically developing individuals across a wide age span. The change in functional connectivity with age mirrored that of impulsivity: younger subjects tended to exhibit functional connectivity similar to the more-impulsive incarcerated juveniles, whereas older subjects exhibited a less-impulsive pattern. This observation suggests that impulsivity in the offender population is a consequence of a delay in typical development, rather than a distinct abnormality.
NeuroImage | 2016
Kathryn L. Mills; Anne-Lise Goddings; Megan M. Herting; Rosa Meuwese; Sarah-Jayne Blakemore; Eveline A. Crone; Ronald E. Dahl; Berna Güroğlu; Armin Raznahan; Elizabeth R. Sowell; Christian K. Tamnes
Longitudinal studies including brain measures acquired through magnetic resonance imaging (MRI) have enabled population models of human brain development, crucial for our understanding of typical development as well as neurodevelopmental disorders. Brain development in the first two decades generally involves early cortical grey matter volume (CGMV) increases followed by decreases, and monotonic increases in cerebral white matter volume (CWMV). However, inconsistencies regarding the precise developmental trajectories call into question the comparability of samples. This issue can be addressed by conducting a comprehensive study across multiple datasets from diverse populations. Here, we present replicable models for gross structural brain development between childhood and adulthood (ages 8–30 years) by repeating analyses in four separate longitudinal samples (391 participants; 852 scans). In addition, we address how accounting for global measures of cranial/brain size affect these developmental trajectories. First, we found evidence for continued development of both intracranial volume (ICV) and whole brain volume (WBV) through adolescence, albeit following distinct trajectories. Second, our results indicate that CGMV is at its highest in childhood, decreasing steadily through the second decade with deceleration in the third decade, while CWMV increases until mid-to-late adolescence before decelerating. Importantly, we show that accounting for cranial/brain size affects models of regional brain development, particularly with respect to sex differences. Our results increase confidence in our knowledge of the pattern of brain changes during adolescence, reduce concerns about discrepancies across samples, and suggest some best practices for statistical control of cranial volume and brain size in future studies.