Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kathryn S. E. Cheah is active.

Publication


Featured researches published by Kathryn S. E. Cheah.


Nature Medicine | 2005

Genomic instability in laminopathy-based premature aging

Baohua Liu; Jianming Wang; Kui Ming Chan; Wai Mui Tjia; Wen Deng; Xin Yuan Guan; Jian-Dong Huang; Kai Man Li; Pui Yin Chau; David J. Chen; Duanqing Pei; Alberto M. Pendás; Juan Cadiñanos; Carlos López-Otín; Hung-Fat Tse; Christopher J. Hutchison; Junjie Chen; Yihai Cao; Kathryn S. E. Cheah; Karl Tryggvason; Zhongjun Zhou

Premature aging syndromes often result from mutations in nuclear proteins involved in the maintenance of genomic integrity. Lamin A is a major component of the nuclear lamina and nuclear skeleton. Truncation in lamin A causes Hutchinson-Gilford progerial syndrome (HGPS), a severe form of early-onset premature aging. Lack of functional Zmpste24, a metalloproteinase responsible for the maturation of prelamin A, also results in progeroid phenotypes in mice and humans. We found that Zmpste24-deficient mouse embryonic fibroblasts (MEFs) show increased DNA damage and chromosome aberrations and are more sensitive to DNA-damaging agents. Bone marrow cells isolated from Zmpste24−/− mice show increased aneuploidy and the mice are more sensitive to DNA-damaging agents. Recruitment of p53 binding protein 1 (53BP1) and Rad51 to sites of DNA lesion is impaired in Zmpste24−/− MEFs and in HGPS fibroblasts, resulting in delayed checkpoint response and defective DNA repair. Wild-type MEFs ectopically expressing unprocessible prelamin A show similar defects in checkpoint response and DNA repair. Our results indicate that unprocessed prelamin A and truncated lamin A act dominant negatively to perturb DNA damage response and repair, resulting in genomic instability which might contribute to laminopathy-based premature aging.


Nature | 2005

Sox2 is required for sensory organ development in the mammalian inner ear

Amy E. Kiernan; Anna L. Pelling; Keith Leung; Anna S.P. Tang; Donald M. Bell; Charles Tease; Robin Lovell-Badge; Karen P. Steel; Kathryn S. E. Cheah

Sensory hair cells and their associated non-sensory supporting cells in the inner ear are fundamental for hearing and balance. They arise from a common progenitor, but little is known about the molecular events specifying this cell lineage. We recently identified two allelic mouse mutants, light coat and circling (Lcc) and yellow submarine (Ysb), that show hearing and balance impairment. Lcc/Lcc mice are completely deaf, whereas Ysb/Ysb mice are severely hearing impaired. We report here that inner ears of Lcc/Lcc mice fail to establish a prosensory domain and neither hair cells nor supporting cells differentiate, resulting in a severe inner ear malformation, whereas the sensory epithelium of Ysb/Ysb mice shows abnormal development with disorganized and fewer hair cells. These phenotypes are due to the absence (in Lcc mutants) or reduced expression (in Ysb mutants) of the transcription factor SOX2, specifically within the developing inner ear. SOX2 continues to be expressed in the inner ears of mice lacking Math1 (also known as Atoh1 and HATH1), a gene essential for hair cell differentiation, whereas Math1 expression is absent in Lcc mutants, suggesting that Sox2 acts upstream of Math1.


Spine | 2009

Prevalence and Pattern of Lumbar Magnetic Resonance Imaging Changes in a Population Study of One Thousand Forty-Three Individuals

Kenneth M.C. Cheung; Jaro Karppinen; Danny Chan; Daniel Wai-Hung Ho; You-Qiang Song; Pak Sham; Kathryn S. E. Cheah; John C. Y. Leong; Keith D. K. Luk

Study Design. A cross-sectional population study of magnetic resonance imaging (MRI) changes. Objective. To examine the pattern and prevalence of lumbar spine MRI changes within a southern Chinese population and their relationship with back pain. Summary of Background Data. Previous studies on MRI changes and back pain have used populations of asymptomatic individuals or patients presenting with back pain and sciatica. Thus, the prevalence and pattern of intervertebral disc degeneration within the population is not known. Methods. Lumbar spine MRIs were obtained in 1043 volunteers between 18 to 55 years of age. MRI changes including disc degeneration, herniation, anular tears (HIZ), and Schmorl’s nodes were noted by 2 independent observers. Differences were settled by consensus. Disc degeneration was graded using Schneiderman’s classification, and a total score (DDD score) was calculated by the summation of the Schneiderman’s score for each lumbar level. A K-mean clustering program was used to group individuals into different patterns of degeneration. Results. Forty percent of individuals under 30 years of age had lumbar intervertebral disc degeneration (LDD), the prevalence of LDD increasing progressively to over 90% by 50 to 55 years of age. There was a positive correlation between the DDD score and low back pain. L5–S1 and L4–L5 were the most commonly affected levels. Apart from the usual patterns of degeneration, some uncommon patternsof degeneration were identified, comprising of subjects with skip level lesions (intervening normal levels) and isolated upper or mid lumbar degeneration. Conclusion. LDD is common, and its incidence increases with age. In a population setting, there is a significant association of LDD on MRI with back pain.


Nature | 2008

Sox18 induces development of the lymphatic vasculature in mice

Mathias Francois; Andrea Caprini; Brett M. Hosking; Fabrizio Orsenigo; Dagmar Wilhelm; Catherine M. Browne; Karri Paavonen; Tara Karnezis; Ramin Shayan; Meredith Downes; Tara Davidson; D. Tutt; Kathryn S. E. Cheah; Steven A. Stacker; George E. O. Muscat; Marc G. Achen; Elisabetta Dejana; Peter Koopman

The lymphatic system plays a key role in tissue fluid regulation and tumour metastasis, and lymphatic defects underlie many pathological states including lymphoedema, lymphangiectasia, lymphangioma and lymphatic dysplasia. However, the origins of the lymphatic system in the embryo, and the mechanisms that direct growth of the network of lymphatic vessels, remain unclear. Lymphatic vessels are thought to arise from endothelial precursor cells budding from the cardinal vein under the influence of the lymphatic hallmark gene Prox1 (prospero homeobox 1; ref. 4). Defects in the transcription factor gene SOX18 (SRY (sex determining region Y) box 18) cause lymphatic dysfunction in the human syndrome hypotrichosis-lymphoedema-telangiectasia, suggesting that Sox18 may also play a role in lymphatic development or function. Here we use molecular, cellular and genetic assays in mice to show that Sox18 acts as a molecular switch to induce differentiation of lymphatic endothelial cells. Sox18 is expressed in a subset of cardinal vein cells that later co-express Prox1 and migrate to form lymphatic vessels. Sox18 directly activates Prox1 transcription by binding to its proximal promoter. Overexpression of Sox18 in blood vascular endothelial cells induces them to express Prox1 and other lymphatic endothelial markers, while Sox18-null embryos show a complete blockade of lymphatic endothelial cell differentiation from the cardinal vein. Our findings demonstrate a critical role for Sox18 in developmental lymphangiogenesis, and suggest new avenues to investigate for therapeutic management of human lymphangiopathies.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Sox2 signaling in prosensory domain specification and subsequent hair cell differentiation in the developing cochlea

Alain Dabdoub; Chandrakala Puligilla; Jennifer M. Jones; Bernd Fritzsch; Kathryn S. E. Cheah; Larysa Pevny; Matthew W. Kelley

Sox2 is a high-mobility transcription factor that is one of the earliest markers of developing inner ear prosensory domains. In humans, mutations in SOX2 cause sensorineural hearing loss and a loss of function study in mice showed that Sox2 is required for prosensory formation in the cochlea. However, the specific roles of Sox2 have not been determined. Here we illustrate a dynamic role of Sox2 as an early permissive factor in prosensory domain formation followed by a mutually antagonistic relationship with Atoh1, a bHLH protein necessary for hair cell development. We demonstrate that decreased levels of Sox2 result in precocious hair cell differentiation and an over production of inner hair cells and that these effects are likely mediated through an antagonistic interaction between Sox2 and the bHLH molecule Atoh1. Using gain- and loss-of-function experiments we provide evidence for the molecular pathway responsible for the formation of the cochlear prosensory domain. Sox2 expression is promoted by Notch signaling and Prox1, a homeobox transcription factor, is a downstream target of Sox2. These results demonstrate crucial and diverse roles for Sox2 in the development, specification, and maintenance of sensory cells within the cochlea.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Hypertrophic chondrocytes can become osteoblasts and osteocytes in endochondral bone formation.

L Yang; Ky Tsang; Hc Tang; Danny Chan; Kathryn S. E. Cheah

Significance The possibility that terminally differentiated hypertrophic chondrocytes could survive and become osteoblasts in vivo has been debated for more than a century. We show that hypertrophic chondrocytes can survive the cartilage-to-bone transition and become osteoblasts and osteocytes during endochondral bone formation and in bone repair. Our discovery provides the basis for a conceptual change of a chondrocyte-to-osteoblast lineage continuum, with new insights into the process of endochondral bone formation, the ontogeny of bone cells, and bone homeostasis. Furthermore, our findings have implications for current concepts on mechanisms of skeletal disorders and bone repair and regeneration. According to current dogma, chondrocytes and osteoblasts are considered independent lineages derived from a common osteochondroprogenitor. In endochondral bone formation, chondrocytes undergo a series of differentiation steps to form the growth plate, and it generally is accepted that death is the ultimate fate of terminally differentiated hypertrophic chondrocytes (HCs). Osteoblasts, accompanying vascular invasion, lay down endochondral bone to replace cartilage. However, whether an HC can become an osteoblast and contribute to the full osteogenic lineage has been the subject of a century-long debate. Here we use a cell-specific tamoxifen-inducible genetic recombination approach to track the fate of murine HCs and show that they can survive the cartilage-to-bone transition and become osteogenic cells in fetal and postnatal endochondral bones and persist into adulthood. This discovery of a chondrocyte-to-osteoblast lineage continuum revises concepts of the ontogeny of osteoblasts, with implications for the control of bone homeostasis and the interpretation of the underlying pathological bases of bone disorders.


Molecular and Cellular Biology | 1999

Mechanism of Regulatory Target Selection by the SOX High- Mobility-Group Domain Proteins as Revealed by Comparison of SOX1/2/3 and SOX9

Yusuke Kamachi; Kathryn S. E. Cheah; Hisato Kondoh

ABSTRACT SOX proteins bind similar DNA motifs through their high-mobility-group (HMG) domains, but their action is highly specific with respect to target genes and cell type. We investigated the mechanism of target selection by comparing SOX1/2/3, which activate δ-crystallin minimal enhancer DC5, with SOX9, which activates Col2a1 minimal enhancer COL2C2. These enhancers depend on both the SOX binding site and the binding site of a putative partner factor. The DC5 site was equally bound and bent by the HMG domains of SOX1/2 and SOX9. The activation domains of these SOX proteins mapped at the distal portions of the C-terminal domains were not cell specific and were independent of the partner factor. Chimeric proteins produced between SOX1 and SOX9 showed that to activate the DC5 enhancer, the C-terminal domain must be that of SOX1, although the HMG domains were replaceable. The SOX2-VP16 fusion protein, in which the activation domain of SOX2 was replaced by that of VP16, activated the DC5 enhancer still in a partner factor-dependent manner. The results argue that the proximal portion of the C-terminal domain of SOX1/2 specifically interacts with the partner factor, and this interaction determines the specificity of the SOX1/2 action. Essentially the same results were obtained in the converse experiments in which COL2C2 activation by SOX9 was analyzed, except that specificity of SOX9-partner factor interaction also involved the SOX9 HMG domain. The highly selective SOX-partner factor interactions presumably stabilize the DNA binding of the SOX proteins and provide the mechanism for regulatory target selection.


Nature Communications | 2012

Exhaustion of nucleus pulposus progenitor cells with ageing and degeneration of the intervertebral disc

Daisuke Sakai; Yoshihiko Nakamura; Tomoko Nakai; Taishi Mishima; Shunichi Kato; Sibylle Grad; Mauro Alini; Danny Chan; Kathryn S. E. Cheah; Ken Ichi Yamamura; Koichi Masuda; Hideyuki Okano; Kiyoshi Ando; Joji Mochida

Despite the high prevalence of intervertebral disc disease, little is known about changes in intervertebral disc cells and their regenerative potential with ageing and intervertebral disc degeneration. Here we identify populations of progenitor cells that are Tie2 positive (Tie2+) and disialoganglioside 2 positive (GD2+), in the nucleus pulposus from mice and humans. These cells form spheroid colonies that express type II collagen and aggrecan. They are clonally multipotent and differentiated into mesenchymal lineages and induced reorganization of nucleus pulposus tissue when transplanted into non-obese diabetic/severe combined immunodeficient mice. The frequency of Tie2+ cells in tissues from patients decreases markedly with age and degeneration of the intervertebral disc, suggesting exhaustion of their capacity for regeneration. However, progenitor cells (Tie2+GD2+) can be induced from their precursor cells (Tie2+GD2-) under simple culture conditions. Moreover, angiopoietin-1, a ligand of Tie2, is crucial for the survival of nucleus pulposus cells. Our results offer insights for regenerative therapy and a new diagnostic standard.


Cell and Tissue Research | 2010

The developmental roles of the extracellular matrix: beyond structure to regulation

Ky Tsang; Martin Cheung; Danny Chan; Kathryn S. E. Cheah

Cells in multicellular organisms are surrounded by a complex three-dimensional macromolecular extracellular matrix (ECM). This matrix, traditionally thought to serve a structural function providing support and strength to cells within tissues, is increasingly being recognized as having pleiotropic effects in development and growth. Elucidation of the role that the ECM plays in developmental processes has been significantly advanced by studying the phenotypic and developmental consequences of specific genetic alterations of ECM components in the mouse. These studies have revealed the enormous contribution of the ECM to the regulation of key processes in morphogenesis and organogenesis, such as cell adhesion, proliferation, specification, migration, survival, and differentiation. The ECM interacts with signaling molecules and morphogens thereby modulating their activities. This review considers these advances in our understanding of the function of ECM proteins during development, extending beyond their structural capacity, to embrace their new roles in intercellula signaling.


Spine | 2005

The TRP2 Allele of COL9A2 is an Age-Dependent Risk Factor for the Development and Severity of Intervertebral Disc Degeneration

Jeffrey J. T. Jim; Noora Noponen-Hietala; Kenneth M.C. Cheung; Jurg Ott; Jaro Karppinen; Ahmad Sahraravand; Keith D. K. Luk; Shea Ping Yip; Pak Sham; You-Qiang Song; John C. Y. Leong; Kathryn S. E. Cheah; Leena Ala-Kokko; Danny Chan

Study Design. Low back pain (LBP) and sciatica are usually caused by degenerative disc disease (DDD). Although they are common, the etiology of these conditions is poorly understood. A large population case-control study in the Southern Chinese was performed to study genetic risk factors to DDD. Objectives. To gain a better understanding of the etiology of DDD in relation to structural defects of the intervertebral disc. Summary of Background Data. A Finnish study found an association between LBP and sciatica with two variants of the α-chains of collagen IX, encoded by the Trp2 and Trp3 alleles, representing Gln326Trp and Arg103Trp amino acid substitutions in the COL9A2 and COL9A3 genes, respectively. Trp2 was found only in affected individuals (4%), whereas Trp3 was present in both affected (24%) and unaffected (9%) individuals. Because of the low frequency of the Trp2 allele in whites, the significance and contribution of this allele to DDD are not known. Using more objective criteria to define the disease by magnetic resonance imaging (MRI), we tested these alleles for association with DDD in a large population study. Methods. Lumbar DDD, the presence of anular tears, and disc and endplate herniations were defined by MRI in 804 Southern Chinese volunteers 18 to 55 years of age. These were correlated with the frequencies of the Trp2 and Trp3 alleles. Results. The Trp2 allele was present in 20% of the population and was associated with a fourfold increase in the risk of developing anular tears at 30 to 39 years and a 2.4-fold increase in the risk of developing DDD and endplate herniations at 40 to 49 years. Affected Trp2 individuals had more severe degeneration. The Trp3 allele was absent from the Southern Chinese population. Conclusion. This largest-ever population study using MRI to define DDD demonstrates for the first time that the Trp2 allele is a significant risk factor for the development and severity of degeneration. The association is age- dependent as it is more prevalent in some age groups than in others. The contrasting Trp allele frequencies between the Finns and the Chinese are the first indication that the genetic risk factors for DDD varies between ethnic groups.

Collaboration


Dive into the Kathryn S. E. Cheah's collaboration.

Top Co-Authors

Avatar

Danny Chan

University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pak Sham

University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ky Tsang

University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar

Patrick P.L. Tam

Children's Medical Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ling Jim Ng

University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge