Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kathryn S. Lilley is active.

Publication


Featured researches published by Kathryn S. Lilley.


Molecular Psychiatry | 2004

Mitochondrial dysfunction in schizophrenia: evidence for compromised brain metabolism and oxidative stress.

Sudhakaran Prabakaran; J.E. Swatton; Margaret Ryan; S. J. Huffaker; Jeffrey T.-J. Huang; Julian L. Griffin; Matthew T. Wayland; Thomas B. Freeman; F. Dudbridge; Kathryn S. Lilley; Natasha A. Karp; Svenja V. Hester; Dmitri Tkachev; Michael L. Mimmack; Robert H. Yolken; Maree J. Webster; E F Torrey; Sabine Bahn

The etiology and pathophysiology of schizophrenia remain unknown. A parallel transcriptomics, proteomics and metabolomics approach was employed on human brain tissue to explore the molecular disease signatures. Almost half the altered proteins identified by proteomics were associated with mitochondrial function and oxidative stress responses. This was mirrored by transcriptional and metabolite perturbations. Cluster analysis of transcriptional alterations showed that genes related to energy metabolism and oxidative stress differentiated almost 90% of schizophrenia patients from controls, while confounding drug effects could be ruled out. We propose that oxidative stress and the ensuing cellular adaptations are linked to the schizophrenia disease process and hope that this new disease concept may advance the approach to treatment, diagnosis and disease prevention of schizophrenia and related syndromes.


Plant Physiology | 2005

Analysis of Detergent-Resistant Membranes in Arabidopsis. Evidence for Plasma Membrane Lipid Rafts

Georg Hh Borner; D. Janine Sherrier; Thilo Weimar; Louise V. Michaelson; Nathan D. Hawkins; Andrew MacAskill; Johnathan A. Napier; Michael H. Beale; Kathryn S. Lilley; Paul Dupree

The trafficking and function of cell surface proteins in eukaryotic cells may require association with detergent-resistant sphingolipid- and sterol-rich membrane domains. The aim of this work was to obtain evidence for lipid domain phenomena in plant membranes. A protocol to prepare Triton X-100 detergent-resistant membranes (DRMs) was developed using Arabidopsis (Arabidopsis thaliana) callus membranes. A comparative proteomics approach using two-dimensional difference gel electrophoresis and liquid chromatography-tandem mass spectrometry revealed that the DRMs were highly enriched in specific proteins. They included eight glycosylphosphatidylinositol-anchored proteins, several plasma membrane (PM) ATPases, multidrug resistance proteins, and proteins of the stomatin/prohibitin/hypersensitive response family, suggesting that the DRMs originated from PM domains. We also identified a plant homolog of flotillin, a major mammalian DRM protein, suggesting a conserved role for this protein in lipid domain phenomena in eukaryotic cells. Lipid analysis by gas chromatography-mass spectrometry showed that the DRMs had a 4-fold higher sterol-to-protein content than the average for Arabidopsis membranes. The DRMs were also 5-fold increased in sphingolipid-to-protein ratio. Our results indicate that the preparation of DRMs can yield a very specific set of membrane proteins and suggest that the PM contains phytosterol and sphingolipid-rich lipid domains with a specialized protein composition. Our results also suggest a conserved role of lipid modification in targeting proteins to both the intracellular and extracellular leaflet of these domains. The proteins associated with these domains provide important new experimental avenues into understanding plant cell polarity and cell surface processes.


Molecular & Cellular Proteomics | 2010

Addressing Accuracy and Precision Issues in iTRAQ Quantitation

Natasha A. Karp; Wolfgang Huber; Pawel Sadowski; Philip D. Charles; Svenja V. Hester; Kathryn S. Lilley

iTRAQ (isobaric tags for relative or absolute quantitation) is a mass spectrometry technology that allows quantitative comparison of protein abundance by measuring peak intensities of reporter ions released from iTRAQ-tagged peptides by fragmentation during MS/MS. However, current data analysis techniques for iTRAQ struggle to report reliable relative protein abundance estimates and suffer with problems of precision and accuracy. The precision of the data is affected by variance heterogeneity: low signal data have higher relative variability; however, low abundance peptides dominate data sets. Accuracy is compromised as ratios are compressed toward 1, leading to underestimation of the ratio. This study investigated both issues and proposed a methodology that combines the peptide measurements to give a robust protein estimate even when the data for the protein are sparse or at low intensity. Our data indicated that ratio compression arises from contamination during precursor ion selection, which occurs at a consistent proportion within an experiment and thus results in a linear relationship between expected and observed ratios. We proposed that a correction factor can be calculated from spiked proteins at known ratios. Then we demonstrated that variance heterogeneity is present in iTRAQ data sets irrespective of the analytical packages, LC-MS/MS instrumentation, and iTRAQ labeling kit (4-plex or 8-plex) used. We proposed using an additive-multiplicative error model for peak intensities in MS/MS quantitation and demonstrated that a variance-stabilizing normalization is able to address the error structure and stabilize the variance across the entire intensity range. The resulting uniform variance structure simplifies the downstream analysis. Heterogeneity of variance consistent with an additive-multiplicative model has been reported in other MS-based quantitation including fields outside of proteomics; consequently the variance-stabilizing normalization methodology has the potential to increase the capabilities of MS in quantitation across diverse areas of biology and chemistry.


Plant Physiology | 2003

Identification of Glycosylphosphatidylinositol-Anchored Proteins in Arabidopsis. A Proteomic and Genomic Analysis

Georg Hh Borner; Kathryn S. Lilley; Tim J. Stevens; Paul Dupree

In a recent bioinformatic analysis, we predicted the presence of multiple families of cell surface glycosylphosphatidylinositol (GPI)-anchored proteins (GAPs) in Arabidopsis (G.H.H. Borner, D.J. Sherrier, T.J. Stevens, I.T. Arkin, P. Dupree [2002] Plant Physiol 129: 486-499). A number of publications have since demonstrated the importance of predicted GAPs in diverse physiological processes including root development, cell wall integrity, and adhesion. However, direct experimental evidence for their GPI anchoring is mostly lacking. Here, we present the first, to our knowledge, large-scale proteomic identification of plant GAPs. Triton X-114 phase partitioning and sensitivity to phosphatidylinositol-specific phospholipase C were used to prepare GAP-rich fractions from Arabidopsis callus cells. Two-dimensional fluorescence difference gel electrophoresis and one-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis demonstrated the existence of a large number of phospholipase C-sensitive Arabidopsis proteins. Using liquid chromatography-tandem mass spectrometry, 30 GAPs were identified, including six β-1,3 glucanases, five phytocyanins, four fasciclin-like arabinogalactan proteins, four receptor-like proteins, two Hedgehog-interacting-like proteins, two putative glycerophosphodiesterases, a lipid transfer-like protein, a COBRA-like protein, SKU5, and SKS1. These results validate our previous bioinformatic analysis of the Arabidopsis protein database. Using the confirmed GAPs from the proteomic analysis to train the search algorithm, as well as improved genomic annotation, an updated in silico screen yielded 64 new candidates, raising the total to 248 predicted GAPs in Arabidopsis.


Nature Medicine | 2013

Cardioprotection by S-nitrosation of a cysteine switch on mitochondrial complex I

Edward T. Chouchani; Carmen Methner; Sergiy M. Nadtochiy; Angela Logan; Victoria R. Pell; Shujing Ding; Andrew M. James; Helena M. Cochemé; Johannes Reinhold; Kathryn S. Lilley; Linda Partridge; Ian M. Fearnley; Alan J. Robinson; Richard C. Hartley; Robin A. J. Smith; Thomas Krieg; Paul S Brookes; Michael P. Murphy

Oxidative damage from elevated production of reactive oxygen species (ROS) contributes to ischemia-reperfusion injury in myocardial infarction and stroke. The mechanism by which the increase in ROS occurs is not known, and it is unclear how this increase can be prevented. A wide variety of nitric oxide donors and S-nitrosating agents protect the ischemic myocardium from infarction, but the responsible mechanisms are unclear. Here we used a mitochondria-selective S-nitrosating agent, MitoSNO, to determine how mitochondrial S-nitrosation at the reperfusion phase of myocardial infarction is cardioprotective in vivo in mice. We found that protection is due to the S-nitrosation of mitochondrial complex I, which is the entry point for electrons from NADH into the respiratory chain. Reversible S-nitrosation of complex I slows the reactivation of mitochondria during the crucial first minutes of the reperfusion of ischemic tissue, thereby decreasing ROS production, oxidative damage and tissue necrosis. Inhibition of complex I is afforded by the selective S-nitrosation of Cys39 on the ND3 subunit, which becomes susceptible to modification only after ischemia. Our results identify rapid complex I reactivation as a central pathological feature of ischemia-reperfusion injury and show that preventing this reactivation by modification of a cysteine switch is a robust cardioprotective mechanism and hence a rational therapeutic strategy.


Proceedings of the National Academy of Sciences of the United States of America | 2009

The phage abortive infection system, ToxIN, functions as a protein–RNA toxin–antitoxin pair

Peter C. Fineran; Tim R. Blower; Ian Foulds; David Paul Humphreys; Kathryn S. Lilley; George P. C. Salmond

Various mechanisms exist that enable bacteria to resist bacteriophage infection. Resistance strategies include the abortive infection (Abi) systems, which promote cell death and limit phage replication within a bacterial population. A highly effective 2-gene Abi system from the phytopathogen Erwinia carotovora subspecies atroseptica, designated ToxIN, is described. The ToxIN Abi system also functions as a toxin–antitoxin (TA) pair, with ToxN inhibiting bacterial growth and the tandemly repeated ToxI RNA antitoxin counteracting the toxicity. TA modules are currently divided into 2 classes, protein and RNA antisense. We provide evidence that ToxIN defines an entirely new TA class that functions via a novel protein-RNA mechanism, with analogous systems present in diverse bacteria. Despite the debated role of TA systems, we demonstrate that ToxIN provides viral resistance in a range of bacterial genera against multiple phages. This is the first demonstration of a novel mechanistic class of TA systems and of an Abi system functioning in different bacterial genera, both with implications for the dynamics of phage-bacterial interactions.


Journal of Biological Chemistry | 2003

Ubiquitination of α-synuclein in Lewy bodies is a pathological event not associated with impairment of proteasome function

George K. Tofaris; Azam Razzaq; Bernardino Ghetti; Kathryn S. Lilley; Maria Grazia Spillantini

Lewy bodies are intracellular fibrillar inclusions composed of α-synuclein. They constitute the pathological hallmark of Parkinsons disease, dementia with Lewy bodies, and other neurodegenerative diseases. Although the majority of Lewy bodies are stained for ubiquitin by immunohistochemistry, the substrate for this modification is poorly understood. Insoluble, urea-soluble α-synuclein was separated from soluble fractions and subjected to two-dimensional gel electrophoresis to further characterize pathogenic α-synuclein species from disease brains. By using this approach, we found that in sporadic Lewy body diseases a highly modified, disease-associated 22–24-kDa α-synuclein species is ubiquitinated. Conjugation of one, two, and, to a lesser extent, three ubiquitins was detected. This 22–24-kDa α-synuclein species represents partly phosphorylated protein. Furthermore, no generalized impairment of the proteolytic activity of the proteasome was detected in brain regions with Lewy body pathology. Because unmodified α-synuclein is degraded by the proteasome in a ubiquitin-independent manner, these data suggest that accumulation of modified 22–24-kDa α-synuclein is a disease-specific event which may overwhelm the proteolytic system, leading to aberrant ubiquitination. Accordingly, carboxyl-terminal-truncated α-synuclein, presumably the result of aberrant proteolysis, is found only in association with α-synuclein aggregates.


Expert Review of Proteomics | 2004

All about DIGE: quantification technology for differential-display 2D-gel proteomics.

Kathryn S. Lilley; David B. Friedman

2D polyacrylamide gel electrophoresis has been the traditional workhorse of proteomics, allowing for the resolution of several thousand proteins in a single gel. Difference gel electrophoresis is an emerging technology that allows for accurate quantification with statistical confidence while controlling for nonbiologic variation, and also increases the dynamic range and sensitivity of traditional 2D polyacrylamide gel electrophoresis. With inclusion of an internal standard formed from equal amounts of every sample in an experiment, difference gel electrophoresis technology also allows for repetitive measurements and multivariable analyses to be quantitatively analyzed in one co-ordinated experiment, yielding statistically-significant changes in protein expression related to many disease states. This technique promises to be an important tool in clinical proteomics and the study of the mechanism of disease, investigating diagnostic biomarkers and pinpointing novel therapeutic targets.


Molecular & Cellular Proteomics | 2004

Localization of Organelle Proteins by Isotope Tagging (LOPIT)

Tom P. J. Dunkley; Rod B. Watson; Julian L. Griffin; Paul Dupree; Kathryn S. Lilley

We describe a proteomics method for determining the subcellular localization of membrane proteins. Organelles are partially separated using centrifugation through self-generating density gradients. Proteins from each organelle co-fractionate and therefore exhibit similar distributions in the gradient. Protein distributions can be determined through a series of pair-wise comparisons of gradient fractions, using cleavable ICAT to enable relative quantitation of protein levels by MS. The localization of novel proteins is determined using multivariate data analysis techniques to match their distributions to those of proteins that are known to reside in specific organelles. Using this approach, we have simultaneously demonstrated the localization of membrane proteins in both the endoplasmic reticulum and the Golgi apparatus in Arabidopsis. Localization of organelle proteins by isotope tagging is a new tool for high-throughput protein localization, which is applicable to a wide range of research areas such as the study of organelle function and protein trafficking.


Nature Biotechnology | 2003

A systematic approach to modeling, capturing, and disseminating proteomics experimental data

Chris F. Taylor; Norman W. Paton; Kevin L. Garwood; Paul Kirby; David Stead; Zhikang Yin; Eric W. Deutsch; Laura Selway; Janet Walker; Isabel Riba-Garcia; Shabaz Mohammed; Michael J. Deery; Julie Howard; Tom P. J. Dunkley; Ruedi Aebersold; Douglas B. Kell; Kathryn S. Lilley; Peter Roepstorff; John R. Yates; Andy Brass; Alistair J. P. Brown; Phil Cash; Simon J. Gaskell; Simon J. Hubbard; Stephen G. Oliver

Both the generation and the analysis of proteome data are becoming increasingly widespread, and the field of proteomics is moving incrementally toward high-throughput approaches. Techniques are also increasing in complexity as the relevant technologies evolve. A standard representation of both the methods used and the data generated in proteomics experiments, analogous to that of the MIAME (minimum information about a microarray experiment) guidelines for transcriptomics, and the associated MAGE (microarray gene expression) object model and XML (extensible markup language) implementation, has yet to emerge. This hinders the handling, exchange, and dissemination of proteomics data. Here, we present a UML (unified modeling language) approach to proteomics experimental data, describe XML and SQL (structured query language) implementations of that model, and discuss capture, storage, and dissemination strategies. These make explicit what data might be most usefully captured about proteomics experiments and provide complementary routes toward the implementation of a proteome repository.

Collaboration


Dive into the Kathryn S. Lilley's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul Dupree

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar

Natasha A. Karp

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge