Kathryn S. Peiman
Carleton University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kathryn S. Peiman.
The Quarterly Review of Biology | 2010
Kathryn S. Peiman; Beren W. Robinson
Direct interactions among conspecific and heterospecific animals are often mediated by aggressive behavior. We analyze the ecology and evolution of resource-related heterospecific aggression (HA) by reviewing and meta-analyzing 126 studies, contrasting HA with conspecific aggression (CA), and discussing terminological confusions and conceptual models. HA occurred in 78% of tests (n = 459), suggesting a high prevalence and potential effect on niche use and community structure. The benefits of both CA and HA are linked to resource defensibility and abundance, yet HA can change independently of CA. Ecological inferences about HA are often weak because they assume that interference always results from resource competition, and evolutionary inferences made by comparing HA to CA are also weak because they usually ignore history. We believe that comparisons between situations where a focal species is allopatric from and sympatric with a heterospecific competitor provide better opportunities to test hypotheses about HA. In general, according to our data set, aggression was higher with increased resource overlap as expected, both because CA was greater than HA, and HA was greater within compared to between genera. Progress in understanding HA requires distinguishing traits (aggressive behavior) from interactions (agonism, interference), as well as from the ecological and evolutionary causes (competition, ancestry) and consequences (dominance, territoriality, exclusion) of those interactions.
Annals of the New York Academy of Sciences | 2013
Gregory F. Grether; Christopher N. Anderson; Jonathan P. Drury; Alexander N. G. Kirschel; Neil Losin; Kenichi W. Okamoto; Kathryn S. Peiman
Competition has always been a cornerstone of evolutionary biology, and aggression is the predominant form of direct competition in animals, but the evolutionary effects of aggression between species are curiously understudied. Only in the past few years, existing theoretical frameworks have been extended to include interspecific aggression, and significant empirical advances have been made. After arguing that agonistic character displacement (ACD) theory provides the most suitable theoretical framework, we review new empirical evidence for ACD and the results of mathematical models of the process. We consider how ACD can be distinguished empirically from ecological and reproductive character displacement and the additional challenges posed by developmental plasticity. We also provide the first taxonomically broad review of theoretical and empirical work on the effects of interspecific aggression on species coexistence and range limits. We conclude by highlighting promising directions for future research on the evolutionary effects of interspecific aggression.
Ecology Letters | 2016
Neil Losin; Jonathan P. Drury; Kathryn S. Peiman; Chaya Storch; Gregory F. Grether
Interspecific territoriality may play an important role in structuring ecological communities, but the causes of this widespread form of interference competition remain poorly understood. Here, we investigate the phenotypic, ecological and phylogenetic correlates of interspecific territoriality in wood warblers (Parulidae). Interspecifically territorial species have more recent common ancestors and are more similar phenotypically, and are more likely to hybridise, than sympatric, non-interspecifically territorial species. After phylogenetic corrections, however, similarity in plumage and territorial song are the only significant predictors of interspecific territoriality besides syntopy (fine-scale geographic overlap). Our results do not support the long-standing hypothesis that interspecific territoriality occurs only under circumstances in which niche divergence is restricted, which combined with the high incidence of interspecific territoriality in wood warblers (39% of species), suggests that this interspecific interaction is more stable, ecologically and evolutionarily, than commonly assumed.
Trends in Ecology and Evolution | 2017
Gregory F. Grether; Kathryn S. Peiman; Joseph A. Tobias; Beren W. Robinson
Behavioral interference between species, such as territorial aggression, courtship, and mating, is widespread in animals. While aggressive and reproductive forms of interspecific interference have generally been studied separately, their many parallels and connections warrant a unified conceptual approach. Substantial evidence exists that aggressive and reproductive interference have pervasive effects on species coexistence, range limits, and evolutionary processes, including divergent and convergent forms of character displacement. Alien species invasions and climate change-induced range shifts result in novel interspecific interactions, heightening the importance of predicting the consequences of species interactions, and behavioral interference is a fundamental but neglected part of the equation. Here, we outline priorities for further theoretical and empirical research on the ecological and evolutionary consequences of behavioral interference.
The American Naturalist | 2017
Kathryn S. Peiman; Beren W. Robinson
Many morphological, behavioral, physiological, and life-history traits covary across the biological scales of individuals, populations, and species. However, the processes that cause traits to covary also change over these scales, challenging our ability to use patterns of trait covariance to infer process. Trait relationships are also widely assumed to have generic functional relationships with similar evolutionary potentials, and even though many different trait relationships are now identified, there is little appreciation that these may influence trait covariation and evolution in unique ways. We use a trait-performance-fitness framework to classify and organize trait relationships into three general classes, address which ones more likely generate trait covariation among individuals in a population, and review how selection shapes phenotypic covariation. We generate predictions about how trait covariance changes within and among populations as a result of trait relationships and in response to selection and consider how these can be tested with comparative data. Careful comparisons of covariation patterns can narrow the set of hypothesized processes that cause trait covariation when the form of the trait relationship and how it responds to selection yield clear predictions about patterns of trait covariation. We discuss the opportunities and limitations of comparative approaches to evaluate hypotheses about the evolutionary causes and consequences of trait covariation and highlight the importance of evaluating patterns within populations replicated in the same and in different selective environments. Explicit hypotheses about trait relationships are key to generating effective predictions about phenotype and its evolution using covariance data.
The Journal of Experimental Biology | 2017
Kim Birnie-Gauvin; Kathryn S. Peiman; Martin Hage Larsen; Kim Aarestrup; William G. Willmore; Steven J. Cooke
ABSTRACT In the wild, animals are exposed to a growing number of stressors with increasing frequency and intensity, as a result of human activities and human-induced environmental change. To fully understand how wild organisms are affected by stressors, it is crucial to understand the physiology that underlies an organisms response to a stressor. Prolonged levels of elevated glucocorticoids are associated with a state of chronic stress and decreased fitness. Exogenous glucocorticoid manipulation reduces an individuals ability to forage, avoid predators and grow, thereby limiting the resources available for physiological functions like defence against oxidative stress. Using brown trout (Salmo trutta), we evaluated the short-term (2 weeks) and long-term (4 months over winter) effects of exogenous cortisol manipulations (versus relevant shams and controls) on the oxidative status of wild juveniles. Cortisol caused an increase in glutathione over a 2 week period and appeared to reduce glutathione over winter. Cortisol treatment did not affect oxidative stress levels or low molecular weight antioxidants. Cortisol caused a significant decrease in growth rates but did not affect predation risk. Over-winter survival in the stream was associated with low levels of oxidative stress and glutathione. Thus, oxidative stress may be a mechanism by which elevated cortisol causes negative physiological effects. Summary: Transient exogenous cortisol administration to brown trout causes an increase in glutathione in the short term, but this increase is not maintained in the long term; overwinter survival is associated with low levels of oxidative stress and glutathione.
Conservation Physiology | 2017
Kim Birnie-Gauvin; Kathryn S. Peiman; David Raubenheimer; Steven J. Cooke
Humans have modified planet Earth extensively, with impacts ranging from reduced habitat availability to warming temperatures. Here we provide an overview of how humans have modified the nutritional physiology and ecology of wild organisms, and how nutrition is vital to successful conservation practices.
Oecologia | 2017
Kathryn S. Peiman; Kim Birnie-Gauvin; Jonathan D. Midwood; Martin Hage Larsen; Alexander D. M. Wilson; Kim Aarestrup; Steven J. Cooke
Partial migration is a common phenomenon, yet the causes of individual differences in migratory propensity are not well understood. We examined factors that potentially influence timing of migration and migratory propensity in a wild population of juvenile brown trout (Salmo trutta) by combining experimental manipulations with passive integrated transponder telemetry. Individuals were subjected to one of six manipulations: three designed to mimic natural stressors (temperature increase, food deprivation, and chase by a simulated predator), an injection of exogenous cortisol designed to mimic an extreme physiological challenge, a sham injection, and a control group. By measuring length and mass of 923 individuals prior to manipulation and by monitoring tagged individuals as they left the stream months later, we assessed whether pre-existing differences influenced migratory tendency and timing of migration, and whether our manipulations affected growth, condition, and timing of migration. We found that pre-existing differences predicted migration, with smaller individuals and individuals in poor condition having a higher propensity to migrate. Exogenous cortisol manipulation had the largest negative effect on growth and condition, and resulted in an earlier migration date. Additionally, low-growth individuals within the temperature and food deprivation treatments migrated earlier. By demonstrating that both pre-existing differences in organism state and additional stressors can affect whether and when individuals migrate, we highlight the importance of understanding individual differences in partial migration. These effects may carry over to influence migration success and affect the evolutionary dynamics of sub-populations experiencing different levels of stress, which is particularly relevant in a changing world.
Zoology | 2017
Kathryn S. Peiman; Kim Birnie-Gauvin; Martin Hage Larsen; Scott F. Colborne; Kathleen M. Gilmour; Kim Aarestrup; William G. Willmore; Steven J. Cooke
The causes and consequences of trait relationships within and among the categories of physiology, morphology, and life-history remain poorly studied. Few studies cross the boundaries of these categories, and recent reviews have pointed out not only the dearth of evidence for among-category correlations but that trait relationships may change depending on the ecological conditions a population faces. We examined changes in mean values and correlations between traits in a partially migrant population of brown trout when migrant sea-run and resident stream forms were breeding sympatrically. Within each sex and life-history strategy group, we used carbon and nitrogen stable isotopes to assess trophic level and habitat use; assessed morphology which reflects swimming and foraging ability; measured circulating cortisol as it is released in response to stressors and is involved in the transition from salt to freshwater; and determined oxidative status by measuring oxidative stress and antioxidants. We found that sea-run trout were larger and had higher values of stable isotopes, cortisol and oxidative stress compared to residents. Most groups showed some correlations between morphology and diet, indicating individual resource specialization was occurring, and we found consistent correlations between morphology and cortisol. Additionally, relationships differed between the sexes (cortisol and oxidative status were related in females but not males) and between life-history strategies (habitat use was related to oxidative status in male sea-run trout but not in either sex of residents). The differing patterns of covariation between the two life-history strategies and between the sexes suggest that the relationships among phenotypic traits are subjected to different selection pressures, illustrating the importance of integrating multiple phenotypic measures across different trait categories and contrasting life-history strategies.
Journal of Experimental Zoology | 2017
Jonathan D. Midwood; Kathryn S. Peiman; Aja E.W. Burt; Mohammed Yusuf Sarker; Michael A. Nannini; David H. Wahl; Steven J. Cooke
Little is known about the size-dependent consequences of stressors on wild animals, which is particularly relevant during winter where size-specific trends in survival are common. Here, exogenous cortisol manipulation was used to investigate the effect of a physiological challenge on overwinter mortality and spring condition of largemouth bass (Micropterus salmoides) across a range of body sizes. Fish were wild-caught in the fall, assigned into either control or cortisol manipulated treatments, and held in replicated experimental ponds. For bass that survived the winter, length, mass, and health metrics (e.g., gonadosomatic index [GSI], hepatosomatic index [HSI], and water content) were determined in the spring. Winter survival was marginally lower for cortisol treated bass; however, there was no influence of initial length, mass, or condition on overwinter survival. When bass were grouped by size, survival was significantly higher for bass 300-350 mm in length compared to those <200 mm. The treatment did not strongly influence spring health metrics, suggesting that largemouth bass that survived the winter were able to recover from the effects of the cortisol elevation. Initial size and sex were linked to some spring health metrics, with large females having the highest GSI and HSI scores. Overall, results from this study do not support the notion that there are size-dependent responses to cortisol manipulation in a teleost fish. Rather, this type of physiological challenge may modulate the natural rates of winter mortality that are primarily driven by starvation and predation, independent of body size, in subadult and adult largemouth bass.