Kathryn V. Anderson
Memorial Sloan Kettering Cancer Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kathryn V. Anderson.
Nature | 2003
Danwei Huangfu; Aimin Liu; Andrew S. Rakeman; Noel S. Murcia; Lee Niswander; Kathryn V. Anderson
Intraflagellar transport (IFT) proteins were first identified as essential factors for the growth and maintenance of flagella in the single-celled alga Chlamydomonas reinhardtii. In a screen for embryonic patterning mutations induced by ethylnitrosourea, here we identify two mouse mutants, wimple (wim) and flexo (fxo), that lack ventral neural cell types and show other phenotypes characteristic of defects in Sonic hedgehog signalling. Both mutations disrupt IFT proteins: the wim mutation is an allele of the previously uncharacterized mouse homologue of IFT172; and fxo is a new hypomorphic allele of polaris, the mouse homologue of IFT88. Genetic analysis shows that Wim, Polaris and the IFT motor protein Kif3a are required for Hedgehog signalling at a step downstream of Patched1 (the Hedgehog receptor) and upstream of direct targets of Hedgehog signalling. Our data show that IFT machinery has an essential and vertebrate-specific role in Hedgehog signal transduction.
Nature | 1998
Louisa P. Wu; Kathryn V. Anderson
The Drosophila immune response uses many of the same components as the mammalian innate immune response, including signalling pathways that activate transcription factors of the Rel/NK-κB family. In response to infection, two Rel proteins, Dif and Dorsal, translocate from the cytoplasm to the nuclei of larval fat-body cells,,. The Toll signalling pathway, which controls dorsal–ventral patterning during Drosophila embryogenesis, regulates the nuclear import of Dorsal in the immune response,, but here we show that the Toll pathway is not required for nuclear import of Dif. Cytoplasmic retention of both Dorsal and Dif depends on Cactus protein; nuclear import of Dorsal and Dif is accompanied by degradation of Cactus. Therefore the two signalling pathways that target Cactus for degradation must discriminate between Cactus–Dorsal and Cactus–Dif complexes. We identified new genes that are required for normal induction of transcription of an antibacterial peptide during the immune response. Mutations in three of these genes prevent nuclear import of Dif in response to infection, and define new components of signalling pathways involving Rel. Mutations in three other genes cause constitutive nuclear localization of Dif; these mutations may block Rel protein activity by a novel mechanism.
Development | 2003
Bradley J. Merrill; H. Amalia Pasolli; Lisa Polak; Michael Rendl; María J. García-García; Kathryn V. Anderson; Elaine Fuchs
The roles of Lef/Tcf proteins in determining cell fate characteristics have been described in many contexts during vertebrate embryogenesis, organ and tissue homeostasis, and cancer formation. Although much of the accumulated work on these proteins involves their ability to transactivate target genes when stimulated by β-catenin, Lef/Tcf proteins can repress target genes in the absence of stabilized β-catenin. By ablating Tcf3 function, we have uncovered an important requirement for a repressor function of Lef/Tcf proteins during early mouse development. Tcf3-/- embryos proceed through gastrulation to form mesoderm, but they develop expanded and often duplicated axial mesoderm structures, including nodes and notochords. These duplications are preceded by ectopic expression of Foxa2, an axial mesoderm gene involved in node specification, with a concomitant reduction in Lefty2, a marker for lateral mesoderm. By contrast, expression of a β-catenin-dependent, Lef/Tcf reporter (TOPGal), is not ectopically activated but is faithfully maintained in the primitive streak. Taken together, these data reveal a unique requirement for Tcf3 repressor function in restricting induction of the anterior-posterior axis.
The EMBO Journal | 2006
Joseph R. Delaney; Svenja Stöven; Hanna Uvell; Kathryn V. Anderson; Ylva Engström; Marek Mlodzik
Jun N‐terminal kinase (JNK) signaling is a highly conserved pathway that controls both cytoskeletal remodeling and transcriptional regulation in response to a wide variety of signals. Despite the importance of JNK in the mammalian immune response, and various suggestions of its importance in Drosophila immunity, the actual contribution of JNK signaling in the Drosophila immune response has been unclear. Drosophila TAK1 has been implicated in the NF‐κB/Relish‐mediated activation of antimicrobial peptide genes. However, we demonstrate that Relish activation is intact in dTAK1 mutant animals, and that the immune response in these mutant animals was rescued by overexpression of a downstream JNKK. The expression of a JNK inhibitor and induction of JNK loss‐of‐function clones in immune responsive tissue revealed a general requirement for JNK signaling in the expression of antimicrobial peptides. Our data indicate that dTAK1 is not required for Relish activation, but instead is required in JNK signaling for antimicrobial peptide gene expression.
Journal of Cell Biology | 2012
Karel F. Liem; Alyson Ashe; Mu He; Peter Satir; Jennifer L. Moran; David R. Beier; Carol Wicking; Kathryn V. Anderson
Mutations in mouse intraflagellar transport–A complex genes alter Sonic hedgehog signaling because of their effects on cilia structure and on trafficking of membrane proteins into cilia.
Nature Genetics | 2003
Kathryn V. Anderson; Philip W. Ingham
The past decade has seen the development of powerful techniques to dissect the molecular processes that regulate development. New tools have been used to reveal the basis of cell polarity, morphogen gradients and regulation of signaling in developing animals. Cell biology and developmental biology have become closely intertwined, and many genes that had been thought of as regulators of general cell biological (housekeeping) functions have been shown to act as specific developmental regulators. Vertebrate developmental genetics is now flourishing, with forward and reverse genetics in both zebrafish and the mouse providing new dimensions to our understanding of development.
Proceedings of the National Academy of Sciences of the United States of America | 2014
Hisham Bazzi; Kathryn V. Anderson
Significance Centrioles form the core of centrosomes, which organize cilia and interphase and spindle microtubules in animal cells, but centrosome function has not been defined in mammals in vivo. We show that mouse embryos that lack centrioles and centrosomes survive to midgestation, when they lack primary cilia and cilia-dependent signaling. Despite the absence of centrosomes, bipolar spindle formation, chromosome segregation, cell-cycle profile, and DNA damage response are normal in the mutants. Unlike mutants that lack cilia, most cells in acentriolar embryos activate a p53-dependent apoptotic pathway. The data show that mammalian centrioles promote the efficient and rapid assembly of the mitotic spindle and that a short delay in prometaphase activates a checkpoint that leads to p53-dependent cell death in vivo. Centrosomes are the microtubule-organizing centers of animal cells that organize interphase microtubules and mitotic spindles. Centrioles are the microtubule-based structures that organize centrosomes, and a defined set of proteins, including spindle assembly defective-4 (SAS4) (CPAP/CENPJ), is required for centriole biogenesis. The biological functions of centrioles and centrosomes vary among animals, and the functions of mammalian centrosomes have not been genetically defined. Here we use a null mutation in mouse Sas4 to define the cellular and developmental functions of mammalian centrioles in vivo. Sas4-null embryos lack centrosomes but survive until midgestation. As expected, Sas4−/− mutants lack primary cilia and therefore cannot respond to Hedgehog signals, but other developmental signaling pathways are normal in the mutants. Unlike mutants that lack cilia, Sas4−/− embryos show widespread apoptosis associated with global elevated expression of p53. Cell death is rescued in Sas4−/− p53−/− double-mutant embryos, demonstrating that mammalian centrioles prevent activation of a p53-dependent apoptotic pathway. Expression of p53 is not activated by abnormalities in bipolar spindle organization, chromosome segregation, cell-cycle profile, or DNA damage response, which are normal in Sas4−/− mutants. Instead, live imaging shows that the duration of prometaphase is prolonged in the mutants while two acentriolar spindle poles are assembled. Independent experiments show that prolonging spindle assembly is sufficient to trigger p53-dependent apoptosis. We conclude that a short delay in the prometaphase caused by the absence of centrioles activates a previously undescribed p53-dependent cell death pathway in the rapidly dividing cells of the mouse embryo.
Cold Spring Harbor Perspectives in Biology | 2017
Fiona Bangs; Kathryn V. Anderson
It has been a decade since it was discovered that primary cilia have an essential role in Hedgehog (Hh) signaling in mammals. This discovery came from screens in the mouse that identified a set of genes that are required for both normal Hh signaling and for the formation of primary cilia. Since then, dozens of mouse mutations have been identified that disrupt cilia in a variety of ways and have complex effects on Hedgehog signaling. Here, we summarize the genetic and developmental studies used to deduce how Hedgehog signal transduction is linked to cilia and the complex effects that perturbation of cilia structure can have on Hh signaling. We conclude by describing the current status of our understanding of the cell-type-specific regulation of ciliogenesis and how that determines the ability of cells to respond to Hedgehog ligands.
Nature Cell Biology | 2015
Fiona Bangs; Nadine Schrode; Anna-Katerina Hadjantonakis; Kathryn V. Anderson
Primary cilia are required for vertebrate cells to respond to specific intercellular signals. Here we define when and where primary cilia appear in the mouse embryo using a transgenic line that expresses ARL13B–mCherry in cilia and Centrinxa02–GFP in centrosomes. Primary cilia first appear on cells of the epiblast at E6.0 and are subsequently present on all derivatives of the epiblast. In contrast, extraembryonic cells of the visceral endoderm and trophectoderm lineages have centrosomes but no cilia. Stem cell lines derived from embryonic lineages recapitulate the inxa0vivo pattern: epiblast stem cells are ciliated, whereas trophoblast stem cells and extraembryonic endoderm (XEN) stem cells lack cilia. Basal bodies in XEN cells are mature and can form cilia when the AURKA–HDAC6 cilium disassembly pathway is inhibited. The lineage-dependent distribution of cilia is stable throughout much of gestation, defining which cells in the placenta and yolk sac are able to respond to Hedgehog ligands.
Trends in Cell Biology | 2017
Mu He; Stephanie O. Agbu; Kathryn V. Anderson
The mammalian Hedgehog (Hh) signaling pathway is required for development and for maintenance of adult stem cells, and overactivation of the pathway can cause tumorigenesis. All responses to Hh family ligands in mammals require the primary cilium, an ancient microtubule-based organelle that extends from the cell surface. Genetic studies in mice and humans have defined specific functions for cilium-associated microtubule motor proteins: they act in the construction and disassembly of the primary cilium, they control ciliary length and stability, and some have direct roles in mammalian Hh signal transduction. These studies highlight how integrated genetic and cell biological studies can define the molecular mechanisms that underlie cilium-associated health and disease.