Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kathy C. Nguyen is active.

Publication


Featured researches published by Kathy C. Nguyen.


Comparative Biochemistry and Physiology C-toxicology & Pharmacology | 2014

Nanosilver cytotoxicity in rainbow trout (Oncorhynchus mykiss) erythrocytes and hepatocytes

Andrey Massarsky; Ren Abraham; Kathy C. Nguyen; Peter Rippstein; Azam F. Tayabali; Vance L. Trudeau; Thomas W. Moon

Silver nanoparticles (AgNPs) are present in a multitude of consumer and medical products; however, the toxicity of AgNPs is not fully understood. This research aimed to elucidate the relationship between AgNP cytotoxicity and oxidative stress and damage in rainbow trout (Oncorhynchus mykiss) hepatocytes and erythrocytes in comparison to silver ions (Ag(+)). Generally the cytotoxicity of AgNPs and Ag(+) was similar, such that both silver types generated reactive oxygen species, decreased glutathione levels, and decreased activities of glutathione reductase and glutathione-S-transferase. Nonetheless, the two silver types had different cellular targets; AgNPs increased lipid peroxidation without apparent uptake into the cells whereas Ag(+) increased DNA damage. Furthermore, the toxicity of both silver types was generally decreased in cells treated with cysteine while treatment with buthionine sulfoximine increased the toxicity of both silver types.


Journal of Physics: Conference Series | 2013

Comparison of toxicity of uncoated and coated silver nanoparticles

Kathy C. Nguyen; V L Seligy; Andrey Massarsky; Thomas W. Moon; Peter Rippstein; J Tan; Azam F. Tayabali

This study compares toxic effects of uncoated (20, 40, 60 and 80 nm) and OECD (Organization for Economic Co-operation and Development) standard citrate- and polyvinylpyrrolidone (PVP)-coated (10, 50, and 75 nm) silver nanoparticles (Ag-NPs) in J774A. 1 macrophage and HT29 epithelial cells. The cells were exposed to different concentrations (silver content) of Ag-NPs for 24 h. Analysis showed that uncoated Ag-NPs, at a concentration of 1 μg/ml, decreased cell viability by 20–40% and that 20 and 40 nm particles were 10% more cytotoxic than the 60 and 80 nm particles. In exposures to coated Ag-NPs, cell viability dropped at 25 μg/ml or higher concentrations, and the effects were also size-dependent. PVP-coated particles induced greater cytotoxicity than citrate-coated particles. Changes in sub-cellular architecture were observed in J774A. 1 cells upon exposure to test Ag-NPs. Furthermore, uncoated Ag-NPs (1 μg/mL) decreased the expression of selected cytokines including TNF-α, IL-1β, and IL-12 (p70) in J774A. 1 and IL-8 in HT29 cells. In contrast, both citrate- and PVP-coated Ag-NPs increased the expression of these cytokines at higher concentrations (25 μg/ml), and PVP-coated particles elevated cytokine levels the most. Moreover, while uncoated Ag-NPs resulted in decreased glutathione (GSH) content and increased superoxide dismutase (SOD) activity in test cells in a size-dependent manner at 1 μg/ml, coated Ag-NPs caused non-significant changes in GSH and SOD, even at the highest test concentrations. Lastly, uncoated (20 and 40 nm) at 1 μg/ml and coated Ag-NPs (10 nm PVP) at 50 μg/ml slightly increased the production of reactive oxygen species (ROS). Our data showed that uncoated Ag-NPs are more toxic than coated Ag-NPs. While uncoated Ag-NPs appear to suppress inflammatory responses and enhance oxidative stress in the test cells, coated Ag-NPs induce toxic effects through up-regulation of cytokines. Our findings support the toxicity of Ag-NPs as being size- and coating- dependent while providing additional insight on the health impact of Ag-NPs.


Toxicological Sciences | 2015

Mitochondrial Toxicity of Cadmium Telluride Quantum Dot Nanoparticles in Mammalian Hepatocytes

Kathy C. Nguyen; Peter Rippstein; Azam F. Tayabali; William G. Willmore

There are an increasing number of studies indicating that mitochondria are relevant targets in nanomaterial-induced toxicity. However, the underlying mechanisms by which nanoparticles (NPs) interact with these organelles and affect their functions are unknown. The aim of this study was to investigate the effects of cadmium telluride quantum dot (CdTe-QD) NPs on mitochondria in human hepatocellular carcinoma HepG2 cells. CdTe-QD treatment resulted in the enlargement of mitochondria as examined with transmission electron microscopy and confocal microscopy. CdTe-QDs appeared to associate with the isolated mitochondria as detected by their inherent fluorescence. Further analyses revealed that CdTe-QD caused disruption of mitochondrial membrane potential, increased intracellular calcium levels, impaired cellular respiration, and decreased adenosine triphosphate synthesis. The effects of CdTe-QDs on mitochondrial oxidative phosphorylation were evidenced by changes in levels and activities of the enzymes of the electron transport chain. Elevation of peroxisome proliferator-activated receptor-γ coactivator levels after CdTe-QD treatment suggested the effects of CdTe-QDs on mitochondrial biogenesis. Our results also showed that the effects of CdTe-QDs were similar or greater to those of cadmium chloride at equivalent concentrations of cadmium, suggesting that the toxic effects of CdTe-QDs were not solely due to cadmium released from the NPs. Overall, the study demonstrated that CdTe-QDs induced multifarious toxicity by causing changes in mitochondrial morphology and structure, as well as impairing their function and stimulating their biogenesis.


Nanotoxicology | 2013

Cadmium telluride quantum dot nanoparticle cytotoxicity and effects on model immune responses to Pseudomonas aeruginosa

Kathy C. Nguyen; Vern Seligy; Azam F. Tayabali

Abstract This study examines dose effects of cadmium telluride quantum dots (CdTe-QDs) from two commercial sources on model macrophages (J774A.1) and colonic epithelial cells (HT29). Effects on cellular immune signalling responses were measured following sequential exposure to QDs and Pseudomonas aeruginosa strain PA01. At CdTe-QD concentrations between 10-2 and 10 µg/ml, cells exhibited changes in metabolism and morphology. Confocal imaging revealed QD internalisation and changes in cell–cell contacts, shapes and internal organisations. QD doses below 10-2 µg/ml caused no observed effects. When QD exposures at 10-7 to 10-3 µg/ml preceded PA01 (107 bacteria/ml) challenges, there were elevated cytotoxicity (5–22%, p < 0.05) and reduced levels (two- to fivefold, p < 0.001) of nitric oxide (NO), TNF-α, KC/CXC−1 and IL-8, compared with PA01 exposures alone. These results demonstrate that exposures to sub-toxic levels of CdTe-QDs can depress cell immune-defence functions, which if occurred in vivo would likely interfere with normal neutrophil recruitment for defence against bacteria.


PLOS ONE | 2012

Comparison of the virulence potential of Acinetobacter strains from clinical and environmental sources.

Azam F. Tayabali; Kathy C. Nguyen; Philip S. Shwed; Jennifer Crosthwait; Gordon Coleman; Verner L. Seligy

Several Acinetobacter strains have utility for biotechnology applications, yet some are opportunistic pathogens. We compared strains of seven Acinetobacter species (baumannii, Ab; calcoaceticus, Ac; guillouiae, Ag; haemolyticus, Ah; lwoffii, Al; junii, Aj; and venetianus, Av-RAG-1) for their potential virulence attributes, including proliferation in mammalian cell conditions, haemolytic/cytolytic activity, ability to elicit inflammatory signals, and antibiotic susceptibility. Only Ah grew at 102 and 104 bacteria/well in mammalian cell culture medium at 37°C. However, co-culture with colonic epithelial cells (HT29) improved growth of all bacterial strains, except Av-RAG-1. Cytotoxicity of Ab and Ah toward HT29 was at least double that of other test bacteria. These effects included bacterial adherence, loss of metabolism, substrate detachment, and cytolysis. Only Ab and Ah exhibited resistance to killing by macrophage-like J774A.1 cells. Haemolytic activity of Ah and Av-RAG-1 was strong, but undetectable for other strains. When killed with an antibiotic, Ab, Ah, Aj and Av-RAG-1 induced 3 to 9-fold elevated HT29 interleukin (IL)-8 levels. However, none of the strains altered levels of J774A.1 pro-inflammatory cytokines (IL-1β, IL-6 and tumor necrosis factor-α). Antibiotic susceptibility profiling showed that Ab, Ag and Aj were viable at low concentrations of some antibiotics. All strains were positive for virulence factor genes ompA and epsA, and negative for mutations in gyrA and parC genes that convey fluoroquinolone resistance. The data demonstrate that Av-RAG-1, Ag and Al lack some potentially harmful characteristics compared to other Acinetobacter strains tested, but the biotechnology candidate Av-RAG-1 should be scrutinized further prior to widespread use.


Analytical Biochemistry | 2015

Development of a bead-based aptamer/antibody detection system for C-reactive protein.

Elyse D. Bernard; Kathy C. Nguyen; Maria C. DeRosa; Azam F. Tayabali; Rocio Aranda-Rodriguez

A multiplexing bead-based platform provides an approach for the development of assays targeting specific analytes for biomonitoring and biosensing applications. Multi-Analyte Profiling (xMAP) assays typically employ a sandwich-type format using antibodies for the capture and detection of analytes of interest, and the system permits the simultaneous quantitation of multiple targets. In this study, an aptamer/antibody assay for the detection of C-reactive protein (CRP) was developed. CRP is an acute phase marker of inflammation whose elevated basal levels are correlated with an increased risk for a number of pathologies. For this assay, an RNA aptamer that binds CRP was conjugated to beads to act as the capture agent. Biotinylated anti-CRP antibody coupled to fluorescently labeled streptavidin was used for quantification of CRP. The detection limit of the CRP assay was 0.4 mg/L in diluted serum. The assay was then used to detect spiked CRP samples in the range of 0.4 to 10mg/L in diluted serum with acceptable recoveries (extrapolated values of 70-130%), including that of a certified reference material (129% recovery). The successful incorporation of the CRP aptamer into this platform demonstrates that the exploration of other aptamer-target systems could increase the number of analytes measurable using xMAP-type assays.


Toxicology in Vitro | 2016

Toxicological evaluation of representative silver nanoparticles in macrophages and epithelial cells.

Kathy C. Nguyen; Laura Richards; Andrey Massarsky; Thomas W. Moon; Azam F. Tayabali

Silver nanoparticles (Ag-NPs) are highly relevant for human and environmental exposure due to their widespread use in consumer and medical products and various applications. Thus, there is a need for evaluating potential toxicity of these NPs. The objective of this study was to investigate the toxic effects of the OECD (Organization for Economic Co-operation and Development) representative Ag-NPs, NM300K, in mouse macrophage J774A.1 and human colonic epithelial HT29 cells, using multiple endpoint assays. Exposure of test cells to different concentrations (1-250 μg/mL; total silver content) of NM300K for 24h showed a dose-dependent decrease in cell viability. At high doses, NM300K altered cell shape and induced the formation of vacuolar structures, as examined by confocal and electron microscopy. Moreover, NM300K induced inflammation as evidenced by the elevated levels of pro-inflammatory cytokines. Finally, high doses of NM300K led to increased production of reactive oxygen species and induction of oxidative stress, leading to oxidative DNA damage and apoptosis in test cells. At equivalent silver concentrations, NM300K were less cytotoxic than AgNO3. However, the similar patterns in the effects of NM300K and AgNO3 throughout the assessed toxicological endpoints suggest that Ag(+) released from these NPs by dissolution could be a primary contributor to toxicity. This study is among the first to characterize the potential toxicity of OECD representative AgNPs in vitro, and provides additional insight into the biological mechanisms associated with Ag-NP toxicity.


PLOS ONE | 2015

Virulence Attributes and Host Response Assays for Determining Pathogenic Potential of Pseudomonas Strains Used in Biotechnology

Azam F. Tayabali; Gordon Coleman; Kathy C. Nguyen

Pseudomonas species are opportunistically pathogenic to humans, yet closely related species are used in biotechnology applications. In order to screen for the pathogenic potential of strains considered for biotechnology applications, several Pseudomonas strains (P.aeruginosa (Pa), P.fluorescens (Pf), P.putida (Pp), P.stutzeri (Ps)) were compared using functional virulence and toxicity assays. Most Pa strains and Ps grew at temperatures between 28°C and 42°C. However, Pf and Pp strains were the most antibiotic resistant, with ciprofloxacin and colistin being the most effective of those tested. No strain was haemolytic on sheep blood agar. Almost all Pa, but not other test strains, produced a pyocyanin-like chromophore, and caused cytotoxicity towards cultured human HT29 cells. Murine endotracheal exposures indicated that the laboratory reference strain, PAO1, was most persistent in the lungs. Only Pa strains induced pro-inflammatory and inflammatory responses, as measured by elevated cytokines and pulmonary Gr-1 -positive cells. Serum amyloid A was elevated at ≥ 48 h post-exposure by only some Pa strains. No relationship was observed between strains and levels of peripheral leukocytes. The species designation or isolation source may not accurately reflect pathogenic potential, since the clinical strain Pa10752 was relatively nonvirulent, but the industrial strain Pa31480 showed comparable virulence to PAO1. Functional assays involving microbial growth, cytotoxicity and murine immunological responses may be most useful for identifying problematic Pseudomonas strains being considered for biotechnology applications.


Toxicological & Environmental Chemistry | 2011

Early murine immune responses from endotracheal exposures to biotechnology-related Bacillus strains

Azam F. Tayabali; Kathy C. Nguyen; Verner L. Seligy

An immunology-based in vivo screening regime was used to assess the potential pathogenicity of biotechnology-related microbes. Strains of Bacillus cereus (Bc), Bacillus subtilis (Bs), Bacillus thuringiensis (Bt), and Bt commercial products (CPs) were tested. Balb/c mice were endotracheally instilled with purified spores, diluted CP, or vegetative cells (VC) (live or dead). Exposed mice were evaluated for changes in behavioral and physical symptoms, bacterial clearance, pulmonary granulocytes, and pulmonary and circulatory pyrogenic cytokines (interleukins (IL)-1β, IL-6 and tumor necrosis factor (TNF)-α), as well as acute phase biomarkers (fibrinogen and serum amyloid A). Except for some differences in clearance rates, no marked effects were observed in mice exposed to any spore at 106 or 107 colony forming units (cfu). In contrast, live Bc or Bt VCs (105 or 106 cfu) produced shock-like symptoms (lethargy, hunched appearance, ruffled fur, and respiratory distress), and 11–200-fold elevations in pyrogenic cytokines at 2-h post-exposure. In the study, 4-h effects included increased lethargy, ocular discharge, and 1.5–4-fold rise in circulatory acute phase markers, but no indications of recovery. Bs VC did not produce any changes in symptoms or biomarkers. After 2 or 4 h of exposure to dead VC, increases of only plasma IL-1β and TNF-α (4.6- and 12.4-fold, respectively) were observed. These findings demonstrate that purified spores produced no marked effects in mice compared to that of metabolically active bacteria. This early screening regime was successful in distinguishing the pathogenicity of the different Bacillus species, and might be useful for assessing the relative hazard potential of other biotechnology-related candidate strains.


Analytical Biochemistry | 2015

Phagocytosis-coupled Flow Cytometry for Detection and Size Discrimination of Anionic Polystyrene Particles

Emily Mutzke; Emily Chomyshyn; Kathy C. Nguyen; Maria Blahoianu; Azam F. Tayabali

Flow cytometry was evaluated for its capacity to detect and distinguish a wide size range (20-2000 nm) of fluorescent polystyrene particles (PSPs). Side scatter and fluorescence parameters could predict dispersed PSP sizes down to 200 nm, but the forward scatter parameter was not discriminatory. Confocal microscopy of flow-sorted fractions confirmed that dispersed PSPs appeared as a single sharp peak on fluorescence histograms, whereas agglomerated PSPs were detected as smaller adjacent peaks. Particles as small as 200 nm could also be detected by flow cytometry after they were first phagocytized by J774A.1 murine macrophages. Confocal microscopy demonstrated that these PSPs were internalized within the cytoplasm. MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] and calcein-AM (acetoxymethyl ester) assays showed that they were not cytotoxic. Internalized PSP size correlated to both cellular side scatter (R(2)=0.9821) and fluorescence intensity (R(2)=0.9993). Furthermore, PSPs of various sizes could be distinguished when J774A.1 cells were loaded with a single size of PSP and mixed with cells containing other sizes. However, spectra of cells loaded with a mixture of PSP sizes resembled those containing only the largest PSP. These data demonstrate the capacity and limitations of phagocytosis-coupled flow cytometry to distinguish between dispersed and agglomerated states and detect a wide size range of particles.

Collaboration


Dive into the Kathy C. Nguyen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge