Kathy Williams
Johns Hopkins University School of Medicine
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kathy Williams.
PLOS Medicine | 2007
Ian M. Rosenthal; Ming Zhang; Kathy Williams; Charles A. Peloquin; Sandeep Tyagi; Andrew Vernon; William R. Bishai; Richard E. Chaisson; Jacques Grosset; Eric L. Nuermberger
Background Availability of an ultra-short-course drug regimen capable of curing patients with tuberculosis in 2 to 3 mo would significantly improve global control efforts. Because immediate prospects for novel treatment-shortening drugs remain uncertain, we examined whether better use of existing drugs could shorten the duration of treatment. Rifapentine is a long-lived rifamycin derivative currently recommended only in once-weekly continuation-phase regimens. Moxifloxacin is an 8-methoxyfluoroquinolone currently used in second-line regimens. Methods and Findings Using a well-established mouse model with a high bacterial burden and human-equivalent drug dosing, we compared the efficacy of rifapentine- and moxifloxacin-containing regimens with that of the standard daily short-course regimen based on rifampin, isoniazid, and pyrazinamide. Bactericidal activity was assessed by lung colony-forming unit counts, and sterilizing activity was assessed by the proportion of mice with culture-positive relapse after 2, 3, 4, and 6 mo of treatment. Here, we demonstrate that replacing rifampin with rifapentine and isoniazid with moxifloxacin dramatically increased the activity of the standard daily regimen. After just 2 mo of treatment, mice receiving rifapentine- and moxifloxacin-containing regimens were found to have negative lung cultures, while those given the standard regimen still harbored 3.17 log10 colony-forming units in the lungs (p < 0.01). No relapse was observed after just 3 mo of treatment with daily and thrice-weekly administered rifapentine- and moxifloxacin-containing regimens, whereas the standard daily regimen required 6 mo to prevent relapse in all mice. Conclusions Rifapentine should no longer be viewed solely as a rifamycin for once-weekly administration. Our results suggest that treatment regimens based on daily and thrice-weekly administration of rifapentine and moxifloxacin may permit shortening the current 6 mo duration of treatment to 3 mo or less. Such regimens warrant urgent clinical investigation.
Antimicrobial Agents and Chemotherapy | 2012
Kathy Williams; Austin Minkowski; Opokua Amoabeng; Charles A. Peloquin; Dinesh Taylor; Koen Andries; Robert S. Wallis; Khisimuzi Mdluli; Eric L. Nuermberger
ABSTRACT Novel oral regimens composed of new drugs with potent activity against Mycobacterium tuberculosis and no cross-resistance with existing agents are needed to shorten and simplify treatment for both drug-susceptible and drug-resistant tuberculosis. As part of a continuing effort to evaluate novel drug combinations for treatment-shortening potential in a murine model, we performed two long-term, relapse-based experiments. In the first experiment, several 3- and 4-drug combinations containing new agents currently in phase 2/3 trials (TMC207 [bedaquiline], PA-824 and PNU-100480 [sutezolid], and/or clofazimine) proved superior to the first-line regimen of rifampin, pyrazinamide, and isoniazid. TMC207 plus PNU-100480 was the most effective drug pair. In the second experiment, in which 3- and 4-drug combinations composed of TMC207 and pyrazinamide plus rifapentine, clofazimine, PNU-100480, or both rifapentine and clofazimine were evaluated, the rank order of drugs improving the sterilizing activity of TMC207 and pyrazinamide was as follows: rifapentine plus clofazimine ≥ clofazimine ≥ rifapentine > PNU-100480. The results revealed potential new building blocks for universally active short-course regimens for drug-resistant tuberculosis. The inclusion of pyrazinamide against susceptible isolates may shorten the duration of treatment further.
Antimicrobial Agents and Chemotherapy | 2011
Rokeya Tasneen; Si Yang Li; Charles A. Peloquin; Dinesh Taylor; Kathy Williams; Koen Andries; Khisimuzi Mdluli; Eric L. Nuermberger
ABSTRACT To truly transform the landscape of tuberculosis treatment, novel regimens containing at least 2 new drugs are needed to simplify the treatment of both drug-susceptible and drug-resistant forms of tuberculosis. As part of an ongoing effort to evaluate novel drug combinations for treatment-shortening potential in a murine model, we performed two long-term, relapse-based experiments. In the first experiment, TMC207 plus pyrazinamide, alone or in combination with any third drug, proved superior to the first-line regimen including rifampin, pyrazinamide, and isoniazid. On the basis of CFU counts at 1 month, clofazimine proved to be the best third drug combined with TMC207 and pyrazinamide, whereas the addition of PA-824 was modestly antagonistic. Relapse results were inconclusive due to the low rate of relapse in all test groups. In the second experiment evaluating 3-drug combinations composed of TMC207, pyrazinamide, PA-824, moxifloxacin, and rifapentine, TMC207 plus pyrazinamide plus either rifapentine or moxifloxacin was the most effective, curing 100% and 67% of the mice treated, respectively, in 2 months of treatment. Four months of the first-line regimen did not cure any mice, whereas the combination of TMC207, PA-824, and moxifloxacin cured 50% of the mice treated. The results reveal new building blocks for novel regimens with the potential to shorten the duration of treatment for both drug-susceptible and drug-resistant tuberculosis, including the combination of TMC207, pyrazinamide, PA-824, and a potent fluoroquinolone.
Journal of Antimicrobial Chemotherapy | 2010
Zahoor Ahmad; Eric L. Nuermberger; Rokeya Tasneen; Michael L. Pinn; Kathy Williams; Charles A. Peloquin; Jacques Grosset; Petros C. Karakousis
Objectives In this study, we sought to compare the sterilizing activity of human-equivalent doses of the ‘Denver regimen’ against acute tuberculosis (TB) infection in the standard mouse model and in the guinea pig. Methods Pharmacokinetic studies in guinea pigs were used to establish human-equivalent doses for rifampicin, isoniazid and pyrazinamide. Guinea pigs and mice were aerosol-infected with Mycobacterium tuberculosis CDC1551 and treatment was started 2 weeks later with rifampicin/isoniazid/pyrazinamide for up to 6 months. For the first 2 weeks of therapy, the dosing frequency was 5 days/week, and for the remaining period, twice weekly. Treatment was discontinued in groups of 30 mice and 10 guinea pigs at 5 months and at 6 months, and these animals were held for a further 3 months in order to assess relapse rates. Results Guinea pig lungs became culture-negative after 3 months of predominantly twice-weekly treatment and relapse rates were 0% (0/10) both after 5 months and after 6 months of treatment. In contrast, all mice remained culture-positive despite 6 months of the same treatment, and 93% (28/30) and 69% (20/29) of mice relapsed after treatment for 5 and 6 months, respectively. Conclusions Treatment with rifampicin/isoniazid/pyrazinamide administered at human-equivalent doses is much more potent against acute TB infection in guinea pigs than in mice. Our findings have important implications for the use of alternative animal models in testing novel TB drug regimens and for modelling M. tuberculosis persistence.
Antimicrobial Agents and Chemotherapy | 2015
Rokeya Tasneen; Kathy Williams; Opokua Amoabeng; Austin Minkowski; Khisimuzi Mdluli; Anna M. Upton; Eric L. Nuermberger
ABSTRACT New regimens based on two or more novel agents are sought in order to shorten or simplify the treatment of both drug-susceptible and drug-resistant forms of tuberculosis. PA-824 is a nitroimidazo-oxazine now in phase II trials and has shown significant early bactericidal activity alone and in combination with the newly approved agent bedaquiline or with pyrazinamide with or without moxifloxacin. While the development of PA-824 continues, a potential next-generation derivative, TBA-354, has been discovered to have in vitro potency superior to that of PA-824 and greater metabolic stability than that of the other nitroimidazole derivative in clinical development, delamanid. In the present study, we compared the activities of PA-824 and TBA-354 as monotherapies in murine models of the initial intensive and continuation phases of treatment, as well as in combination with bedaquiline plus pyrazinamide, sutezolid, and/or clofazimine. The monotherapy studies demonstrated that TBA-354 is 5 to 10 times more potent than PA-824, but selected mutants are cross-resistant to PA-824 and delamanid. The combination studies revealed that TBA-354 is 2 to 4 times more potent than PA-824 when combined with bedaquiline, and when administered at a dose equivalent to that of PA-824, TBA-354 demonstrated superior sterilizing efficacy. Perhaps most importantly, the addition of either nitroimidazole significantly improved the sterilizing activities of bedaquiline and sutezolid, with or without pyrazinamide, confirming the value of each agent in this potentially universally active short-course regimen.
Antimicrobial Agents and Chemotherapy | 2011
Zahoor Ahmad; Austin Minkowski; Charles A. Peloquin; Kathy Williams; Khisimuzi Mdluli; Jacques Grosset; Eric L. Nuermberger
ABSTRACT DC-159a is a new fluoroquinolone with more potent in vitro activity than available fluoroquinolones against both drug-susceptible and fluoroquinolone-resistant Mycobacterium tuberculosis. Here, we report that DC-159a displays pharmacokinetics similar to those of moxifloxacin yet is more active than moxifloxacin during both the initial and continuation phases of treatment in a murine model. These results warrant further preclinical evaluation of DC-159a in selected drug combinations against drug-susceptible and fluoroquinolone-resistant tuberculosis.
Antimicrobial Agents and Chemotherapy | 2016
Rokeya Tasneen; Fabrice Betoudji; Sandeep Tyagi; Si Yang Li; Kathy Williams; Paul J. Converse; Véronique Dartois; Tian Yang; Carl M. Mendel; Khisimuzi Mdluli; Eric L. Nuermberger
ABSTRACT New regimens based on two or more novel agents are sought to shorten or simplify treatment of tuberculosis (TB). Pretomanid (PMD) is a nitroimidazole in phase 3 trials that has significant bactericidal activity alone and in combination with bedaquiline (BDQ) and/or pyrazinamide (PZA). We previously showed that the novel combination of BDQ+PMD plus the oxazolidinone sutezolid (SZD) had sterilizing activity superior to that of the first-line regimen in a murine model of TB. The present experiments compared the activity of different oxazolidinones in combination with BDQ+PMD with or without PZA in the same model. The 3-drug regimen of BDQ+PMD plus linezolid (LZD) had sterilizing activity approaching that of BDQ+PMD+SZD and superior to that of the first-line regimen. The addition of PZA further enhanced activity. Reducing the duration of LZD to 1 month did not significantly affect the activity of the regimen. Halving the LZD dose or replacing LZD with RWJ-416457 modestly reduced activity over the first month but not after 2 months. AZD5847 and tedizolid also increased the bactericidal activity of BDQ+PMD, but they were less effective than the other oxazolidinones. These results provide optimism for safe, short-course oral regimens for drug-resistant TB that may also be superior to the current first-line regimen for drug-susceptible TB.
American Journal of Respiratory and Critical Care Medicine | 2004
Eric L. Nuermberger; Tetsuyuki Yoshimatsu; Sandeep Tyagi; Kathy Williams; Ian M. Rosenthal; Richard O'Brien; Andrew Vernon; Richard E. Chaisson; William R. Bishai; Jacques Grosset
American Journal of Respiratory and Critical Care Medicine | 2006
Ian M. Rosenthal; Kathy Williams; Sandeep Tyagi; Charles A. Peloquin; Andrew Vernon; William R. Bishai; Jacques Grosset; Eric L. Nuermberger
American Journal of Respiratory and Critical Care Medicine | 2005
Ian M. Rosenthal; Kathy Williams; Sandeep Tyagi; Andrew Vernon; Charles A. Peloquin; William R. Bishai; Jacques Grosset; Eric L. Nuermberger