Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kati J. Buckingham is active.

Publication


Featured researches published by Kati J. Buckingham.


Nature Genetics | 2010

Exome sequencing identifies the cause of a mendelian disorder

Sarah B H Ng; Kati J. Buckingham; Choli Lee; Abigail W. Bigham; Holly K. Tabor; Karin M. Dent; Chad D. Huff; Paul Shannon; Ethylin Wang Jabs; Deborah A. Nickerson; Jay Shendure; Michael J. Bamshad

We demonstrate the first successful application of exome sequencing to discover the gene for a rare mendelian disorder of unknown cause, Miller syndrome (MIM%263750). For four affected individuals in three independent kindreds, we captured and sequenced coding regions to a mean coverage of 40× and sufficient depth to call variants at ∼97% of each targeted exome. Filtering against public SNP databases and eight HapMap exomes for genes with two previously unknown variants in each of the four individuals identified a single candidate gene, DHODH, which encodes a key enzyme in the pyrimidine de novo biosynthesis pathway. Sanger sequencing confirmed the presence of DHODH mutations in three additional families with Miller syndrome. Exome sequencing of a small number of unrelated affected individuals is a powerful, efficient strategy for identifying the genes underlying rare mendelian disorders and will likely transform the genetic analysis of monogenic traits.


Nature Genetics | 2010

Exome sequencing identifies MLL2 mutations as a cause of Kabuki syndrome

Sarah B. Ng; Abigail W. Bigham; Kati J. Buckingham; Mark C. Hannibal; Margaret J. McMillin; Heidi I. Gildersleeve; Anita E. Beck; Holly K. Tabor; Gregory M. Cooper; Mefford Hc; Choli Lee; Emily H. Turner; Joshua D. Smith; Mark J. Rieder; Koh-ichiro Yoshiura; Naomichi Matsumoto; Tohru Ohta; Norio Niikawa; Deborah A. Nickerson; Michael J. Bamshad; Jay Shendure

We demonstrate the successful application of exome sequencing to discover a gene for an autosomal dominant disorder, Kabuki syndrome (OMIM%147920). We subjected the exomes of ten unrelated probands to massively parallel sequencing. After filtering against existing SNP databases, there was no compelling candidate gene containing previously unknown variants in all affected individuals. Less stringent filtering criteria allowed for the presence of modest genetic heterogeneity or missing data but also identified multiple candidate genes. However, genotypic and phenotypic stratification highlighted MLL2, which encodes a Trithorax-group histone methyltransferase: seven probands had newly identified nonsense or frameshift mutations in this gene. Follow-up Sanger sequencing detected MLL2 mutations in two of the three remaining individuals with Kabuki syndrome (cases) and in 26 of 43 additional cases. In families where parental DNA was available, the mutation was confirmed to be de novo (n = 12) or transmitted (n = 2) in concordance with phenotype. Our results strongly suggest that mutations in MLL2 are a major cause of Kabuki syndrome.


American Journal of Human Genetics | 2015

The Genetic Basis of Mendelian Phenotypes: Discoveries, Challenges, and Opportunities

Jessica X. Chong; Kati J. Buckingham; Shalini N. Jhangiani; Corinne D. Boehm; Nara Sobreira; Joshua D. Smith; Tanya M. Harrell; Margaret J. McMillin; Wojciech Wiszniewski; Tomasz Gambin; Zeynep Coban Akdemir; Kimberly F. Doheny; Alan F. Scott; Dimitri Avramopoulos; Aravinda Chakravarti; Julie Hoover-Fong; Debra J. H. Mathews; P. Dane Witmer; Hua Ling; Kurt N. Hetrick; Lee Watkins; Karynne E. Patterson; Frederic Reinier; Elizabeth Blue; Donna M. Muzny; Martin Kircher; Kaya Bilguvar; Francesc López-Giráldez; V. Reid Sutton; Holly K. Tabor

Discovering the genetic basis of a Mendelian phenotype establishes a causal link between genotype and phenotype, making possible carrier and population screening and direct diagnosis. Such discoveries also contribute to our knowledge of gene function, gene regulation, development, and biological mechanisms that can be used for developing new therapeutics. As of February 2015, 2,937 genes underlying 4,163 Mendelian phenotypes have been discovered, but the genes underlying ∼50% (i.e., 3,152) of all known Mendelian phenotypes are still unknown, and many more Mendelian conditions have yet to be recognized. This is a formidable gap in biomedical knowledge. Accordingly, in December 2011, the NIH established the Centers for Mendelian Genomics (CMGs) to provide the collaborative framework and infrastructure necessary for undertaking large-scale whole-exome sequencing and discovery of the genetic variants responsible for Mendelian phenotypes. In partnership with 529 investigators from 261 institutions in 36 countries, the CMGs assessed 18,863 samples from 8,838 families representing 579 known and 470 novel Mendelian phenotypes as of January 2015. This collaborative effort has identified 956 genes, including 375 not previously associated with human health, that underlie a Mendelian phenotype. These results provide insight into study design and analytical strategies, identify novel mechanisms of disease, and reveal the extensive clinical variability of Mendelian phenotypes. Discovering the gene underlying every Mendelian phenotype will require tackling challenges such as worldwide ascertainment and phenotypic characterization of families affected by Mendelian conditions, improvement in sequencing and analytical techniques, and pervasive sharing of phenotypic and genomic data among researchers, clinicians, and families.


American Journal of Medical Genetics Part A | 2011

Spectrum of MLL2 (ALR) mutations in 110 cases of Kabuki syndrome.

Mark C. Hannibal; Kati J. Buckingham; Sarah B. Ng; Jeffrey E. Ming; Anita E. Beck; Margaret J. McMillin; Heidi I. Gildersleeve; Abigail W. Bigham; Holly K. Tabor; Mefford Hc; Joseph Cook; Koh-ichiro Yoshiura; Tadashi Matsumoto; Naomichi Matsumoto; Noriko Miyake; Hidefumi Tonoki; Kenji Naritomi; Tadashi Kaname; Toshiro Nagai; Hirofumi Ohashi; Kenji Kurosawa; Jia Woei Hou; Tohru Ohta; Deshung Liang; Akira Sudo; Colleen A. Morris; Siddharth Banka; Graeme C.M. Black; Jill Clayton-Smith; Deborah A. Nickerson

Kabuki syndrome is a rare, multiple malformation disorder characterized by a distinctive facial appearance, cardiac anomalies, skeletal abnormalities, and mild to moderate intellectual disability. Simplex cases make up the vast majority of the reported cases with Kabuki syndrome, but parent‐to‐child transmission in more than a half‐dozen instances indicates that it is an autosomal dominant disorder. We recently reported that Kabuki syndrome is caused by mutations in MLL2, a gene that encodes a Trithorax‐group histone methyltransferase, a protein important in the epigenetic control of active chromatin states. Here, we report on the screening of 110 families with Kabuki syndrome. MLL2 mutations were found in 81/110 (74%) of families. In simplex cases for which DNA was available from both parents, 25 mutations were confirmed to be de novo, while a transmitted MLL2 mutation was found in two of three familial cases. The majority of variants found to cause Kabuki syndrome were novel nonsense or frameshift mutations that are predicted to result in haploinsufficiency. The clinical characteristics of MLL2 mutation‐positive cases did not differ significantly from MLL2 mutation‐negative cases with the exception that renal anomalies were more common in MLL2 mutation‐positive cases. These results are important for understanding the phenotypic consequences of MLL2 mutations for individuals and their families as well as for providing a basis for the identification of additional genes for Kabuki syndrome.


American Journal of Human Genetics | 2012

Haploinsufficiency of SF3B4, a Component of the Pre-mRNA Spliceosomal Complex, Causes Nager Syndrome

Francois P. Bernier; Oana Caluseriu; Sarah Ng; Jeremy Schwartzentruber; Kati J. Buckingham; A. Micheil Innes; Ethylin Wang Jabs; Jeffrey W. Innis; Jane L. Schuette; Jerome L. Gorski; Peter H. Byers; Gregor Andelfinger; Victoria M. Siu; Julie Lauzon; Bridget A. Fernandez; Margaret J. McMillin; Richard H. Scott; Hilary Racher; Jacek Majewski; Deborah A. Nickerson; Jay Shendure; Michael J. Bamshad; Jillian S. Parboosingh

Nager syndrome, first described more than 60 years ago, is the archetype of a class of disorders called the acrofacial dysostoses, which are characterized by craniofacial and limb malformations. Despite intensive efforts, no gene for Nager syndrome has yet been identified. In an international collaboration, FORGE Canada and the National Institutes of Health Centers for Mendelian Genomics used exome sequencing as a discovery tool and found that mutations in SF3B4, a component of the U2 pre-mRNA spliceosomal complex, cause Nager syndrome. After Sanger sequencing of SF3B4 in a validation cohort, 20 of 35 (57%) families affected by Nager syndrome had 1 of 18 different mutations, nearly all of which were frameshifts. These results suggest that most cases of Nager syndrome are caused by haploinsufficiency of SF3B4. Our findings add Nager syndrome to a growing list of disorders caused by mutations in genes that encode major components of the spliceosome and also highlight the synergistic potential of international collaboration when exome sequencing is applied in the search for genes responsible for rare Mendelian phenotypes.


PLOS ONE | 2011

Host Genetic Risk Factors for West Nile Virus Infection and Disease Progression

Abigail W. Bigham; Kati J. Buckingham; Sofia Husain; Mary J. Emond; Kathryn M. Bofferding; Heidi I. Gildersleeve; Ann Rutherford; Natalia M. Astakhova; Andrey A. Perelygin; Michael P. Busch; Kristy O. Murray; James J. Sejvar; Sharone Green; John D. Kriesel; Margo A. Brinton; Michael J. Bamshad

West Nile virus (WNV), a category B pathogen endemic in parts of Africa, Asia and Europe, emerged in North America in 1999, and spread rapidly across the continental U.S. Outcomes of infection with WNV range from asymptomatic to severe neuroinvasive disease manifested as encephalitis, paralysis, and/or death. Neuroinvasive WNV disease occurs in less than one percent of cases, and although host genetic factors are thought to influence risk for symptomatic disease, the identity of these factors remains largely unknown. We tested 360 common haplotype tagging and/or functional SNPs in 86 genes that encode key regulators of immune function in 753 individuals infected with WNV including: 422 symptomatic WNV cases and 331 cases with asymptomatic infections. After applying a Bonferroni correction for multiple tests and controlling for population stratification, SNPs in IRF3 (OR 0.54, p = 0.035) and MX1, (OR 0.19, p = 0.014) were associated with symptomatic WNV infection and a single SNP in OAS1 (OR 9.79, p = 0.003) was associated with increased risk for West Nile encephalitis and paralysis (WNE/P). Together, these results suggest that genetic variation in the interferon response pathway is associated with both risk for symptomatic WNV infection and WNV disease progression.


American Journal of Human Genetics | 2014

Mutations in PIEZO2 Cause Gordon Syndrome, Marden-Walker Syndrome, and Distal Arthrogryposis Type 5

Margaret J. McMillin; Anita E. Beck; Jessica X. Chong; Kathryn M. Shively; Kati J. Buckingham; Heidi I. Gildersleeve; Mariana Aracena; Arthur S. Aylsworth; Pierre Bitoun; John C. Carey; Carol L. Clericuzio; Yanick J. Crow; Cynthia J. Curry; Koenraad Devriendt; David B. Everman; Alan Fryer; Kate Gibson; Maria Luisa Giovannucci Uzielli; John M. Graham; Judith G. Hall; Jacqueline T. Hecht; Randall A. Heidenreich; Jane A. Hurst; Sarosh R. Irani; Ingrid P.C. Krapels; Jules G. Leroy; David Mowat; Gordon T. Plant; Stephen P. Robertson; Elizabeth K. Schorry

Gordon syndrome (GS), or distal arthrogryposis type 3, is a rare, autosomal-dominant disorder characterized by cleft palate and congenital contractures of the hands and feet. Exome sequencing of five GS-affected families identified mutations in piezo-type mechanosensitive ion channel component 2 (PIEZO2) in each family. Sanger sequencing revealed PIEZO2 mutations in five of seven additional families studied (for a total of 10/12 [83%] individuals), and nine families had an identical c.8057G>A (p.Arg2686His) mutation. The phenotype of GS overlaps with distal arthrogryposis type 5 (DA5) and Marden-Walker syndrome (MWS). Using molecular inversion probes for targeted sequencing to screen PIEZO2, we found mutations in 24/29 (82%) DA5-affected families and one of two MWS-affected families. The presence of cleft palate was significantly associated with c.8057G>A (Fishers exact test, adjusted p value < 0.0001). Collectively, although GS, DA5, and MWS have traditionally been considered separate disorders, our findings indicate that they are etiologically related and perhaps represent variable expressivity of the same condition.


American Journal of Human Genetics | 2013

Mosaicism of the UDP-Galactose Transporter SLC35A2 Causes a Congenital Disorder of Glycosylation

Bobby G. Ng; Kati J. Buckingham; Kimiyo Raymond; Martin Kircher; Emily H. Turner; Miao He; Joshua D. Smith; Alexey Eroshkin; Marta Szybowska; Marie Estelle Losfeld; Jessica X. Chong; Mariya Kozenko; Chumei Li; Marc C. Patterson; Rodney D. Gilbert; Deborah A. Nickerson; Jay Shendure; Michael J. Bamshad; Hudson H. Freeze

Biochemical analysis and whole-exome sequencing identified mutations in the Golgi-localized UDP-galactose transporter SLC35A2 that define an undiagnosed X-linked congenital disorder of glycosylation (CDG) in three unrelated families. Each mutation reduced UDP-galactose transport, leading to galactose-deficient glycoproteins. Two affected males were somatic mosaics, suggesting that a wild-type SLC35A2 allele may be required for survival. In infancy, the commonly used biomarker transferrin showed abnormal glycosylation, but its appearance became normal later in childhood, without any corresponding clinical improvement. This may indicate selection against cells carrying the mutant allele. To detect other individuals with such mutations, we suggest transferrin testing in infancy. Here, we report somatic mosaicism in CDG, and our work stresses the importance of combining both genetic and biochemical diagnoses.


Human Molecular Genetics | 2014

A new congenital disorder of glycosylation caused by a mutation in SSR4, the signal sequence receptor 4 protein of the TRAP complex

Marie Estelle Losfeld; Bobby G. Ng; Martin Kircher; Kati J. Buckingham; Emily H. Turner; Alexey Eroshkin; Joshua D. Smith; Jay Shendure; Deborah A. Nickerson; Michael J. Bamshad; Hudson H. Freeze

Nearly 50 congenital disorders of glycosylation (CDG) are known, but many patients biochemically diagnosed with CDG do not have mutations in known genes. Here, we describe a 16-year-old male who was born with microcephaly, developed intellectual disability, gastroesophageal reflux and a seizure disorder. We identified a de novo variant in the X-linked SSR4 gene which encodes a protein of the heterotetrameric translocon-associated protein (TRAP) complex. The c.316delT causes a p.F106Sfs*53 in SSR4 and also reduces expression of other TRAP complex proteins. The glycosylation marker Glyc-ER-GFP was used to confirm the underglycosylation in fibroblasts from the patient. Overexpression of the wild-type SSR4 allele partially restores glycosylation of the marker and of the other members of the TRAP complex. This is the first evidence that the TRAP complex, which binds to the oligosaccharyltransferase complex, is directly involved in N-glycosylation.


American Journal of Human Genetics | 2015

Autosomal-Dominant Multiple Pterygium Syndrome Is Caused by Mutations in MYH3

Jessica X. Chong; Lindsay C. Burrage; Anita E. Beck; Colby T. Marvin; Margaret J. McMillin; Kathryn M. Shively; Tanya M. Harrell; Kati J. Buckingham; Carlos A. Bacino; Mahim Jain; Yasemin Alanay; Susan A. Berry; John C. Carey; Richard A. Gibbs; Brendan Lee; Deborah Krakow; Jay Shendure; Deborah A. Nickerson; Gonçalo R. Abecasis; Peter Anderson; Elizabeth Blue; Marcus Annable; Brian L. Browning; Christina T. L. Chen; Jennifer Chin; Gregory M. Cooper; Colleen Davis; Christopher Frazar; Zongxiao He; Preti Jain

Multiple pterygium syndrome (MPS) is a phenotypically and genetically heterogeneous group of rare Mendelian conditions characterized by multiple pterygia, scoliosis, and congenital contractures of the limbs. MPS typically segregates as an autosomal-recessive disorder, but rare instances of autosomal-dominant transmission have been reported. Whereas several mutations causing recessive MPS have been identified, the genetic basis of dominant MPS remains unknown. We identified four families affected by dominantly transmitted MPS characterized by pterygia, camptodactyly of the hands, vertebral fusions, and scoliosis. Exome sequencing identified predicted protein-altering mutations in embryonic myosin heavy chain (MYH3) in three families. MYH3 mutations underlie distal arthrogryposis types 1, 2A, and 2B, but all mutations reported to date occur in the head and neck domains. In contrast, two of the mutations found to cause MPS in this study occurred in the tail domain. The phenotypic overlap among persons with MPS, coupled with physical findings distinct from other conditions caused by mutations in MYH3, suggests that the developmental mechanism underlying MPS differs from that of other conditions and/or that certain functions of embryonic myosin might be perturbed by disruption of specific residues and/or domains. Moreover, the vertebral fusions in persons with MPS, coupled with evidence of MYH3 expression in bone, suggest that embryonic myosin plays a role in skeletal development.

Collaboration


Dive into the Kati J. Buckingham's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jay Shendure

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Martin Kircher

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anita E. Beck

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge