Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Katia Cortese is active.

Publication


Featured researches published by Katia Cortese.


Current Biology | 2008

The GTPase-Activating Protein GRAF1 Regulates the CLIC/GEEC Endocytic Pathway

Richard Lundmark; Gary J. Doherty; Mark T. Howes; Katia Cortese; Yvonne Vallis; Robert G. Parton; Harvey T. McMahon

Summary Clathrin-independent endocytosis is an umbrella term for a variety of endocytic pathways that internalize numerous cargoes independently of the canonical coat protein Clathrin [1, 2]. Electron-microscopy studies have defined the pleiomorphic CLathrin-Independent Carriers (CLICs) and GPI-Enriched Endocytic Compartments (GEECs) as related major players in such uptake [3, 4]. This CLIC/GEEC pathway relies upon cellular signaling and activation through small G proteins, but mechanistic insight into the biogenesis of its tubular and tubulovesicular carriers is lacking. Here we show that the Rho-GAP-domain-containing protein GRAF1 marks, and is indispensable for, a major Clathrin-independent endocytic pathway. This pathway is characterized by its ability to internalize bacterial exotoxins, GPI-linked proteins, and extracellular fluid. We show that GRAF1 localizes to PtdIns(4,5)P2-enriched, tubular, and punctate lipid structures via N-terminal BAR and PH domains. These membrane carriers are relatively devoid of caveolin1 and flotillin1 but are associated with activity of the small G protein Cdc42. This study provides the first specific noncargo marker for CLIC/GEEC endocytic membranes and demonstrates how GRAF1 can coordinate small G protein signaling and membrane remodeling to facilitate internalization of CLIC/GEEC pathway cargoes.


Development | 2010

The vacuolar ATPase is required for physiological as well as pathological activation of the Notch receptor

Thomas Vaccari; Serena Duchi; Katia Cortese; Carlo Tacchetti; David Bilder

Evidence indicates that endosomal entry promotes signaling by the Notch receptor, but the mechanisms involved are not clear. In a search for factors that regulate Notch activation in endosomes, we isolated mutants in Drosophila genes that encode subunits of the vacuolar ATPase (V-ATPase) proton pump. Cells lacking V-ATPase function display impaired acidification of the endosomal compartment and a correlated failure to degrade endocytic cargoes. V-ATPase mutant cells internalize Notch and accumulate it in the lysosome, but surprisingly also show a substantial loss of both physiological and ectopic Notch activation in endosomes. V-ATPase activity is required in signal-receiving cells for Notch signaling downstream of ligand activation but upstream of γ-secretase-dependent S3 cleavage. These data indicate that V-ATPase, probably via acidification of early endosomes, promotes not only the degradation of Notch in the lysosome but also the activation of Notch signaling in endosomes. The results also suggest that the ionic properties of the endosomal lumen might regulate Notch cleavage, providing a rationale for physiological as well as pathological endocytic control of Notch activity.


Nature Genetics | 1999

Ocular albinism: Evidence for a defect in an intracellular signal transduction system

M. Vittoria Schiaffino; Marilena d'Addio; Anna Alloni; Cinzia Baschirotto; Caterina Valetti; Katia Cortese; Claudia Puri; M. Teresa Bassi; Cristina Colla; Michele De Luca; Carlo Tacchetti; Andrea Ballabio

G protein-coupled receptors (GPCRs) participate in the most common signal transduction system at the plasma membrane. The wide distribution of heterotrimeric G proteins in the internal membranes suggests that a similar signalling mechanism might also be used at intracellular locations. We provide here structural evidence that the protein product of the ocular albinism type 1 gene (OA1), a pigment cell-specific integral membrane glycoprotein, represents a novel member of the GPCR superfamily and demonstrate that it binds heterotrimeric G proteins. Moreover, we show that OA1 is not found at the plasma membrane, being instead targeted to specialized intracellular organelles, the melanosomes. Our data suggest that OA1 represents the first example of an exclusively intracellular GPCR and support the hypothesis that GPCR-mediated signal transduction systems also operate at the internal membranes in mammalian cells.


PLOS ONE | 2012

Immunomodulation by Different Types of N-Oxides in the Hemocytes of the Marine Bivalve Mytilus galloprovincialis

Caterina Ciacci; Barbara Canonico; Dagmar Bilaniĉovă; Rita Fabbri; Katia Cortese; Gabriella Gallo; Antonio Marcomini; Giulio Pojana; Laura Canesi

The potential toxicity of engineered nanoparticles (NPs) for humans and the environment represents an emerging issue. Since the aquatic environment represents the ultimate sink for NP deposition, the development of suitable assays is needed to evaluate the potential impact of NPs on aquatic biota. The immune system is a sensitive target for NPs, and conservation of innate immunity represents an useful basis for studying common biological responses to NPs. Suspension-feeding invertebrates, such as bivalves, are particularly at risk to NP exposure, since they have extremely developed systems for uptake of nano and microscale particles integral to intracellular digestion and cellular immunity. Evaluation of the effects of NPs on functional parameters of bivalve immunocytes, the hemocytes, may help understanding the major toxic mechanisms and modes of actions that could be relevant for different NP types in aquatic organisms.In this work, a battery of assays was applied to the hemocytes of the marine bivalve Mytilus galloprovincialis to compare the in vitro effects of different n-oxides (n-TiO2, n-SiO2, n-ZnO, n-CeO2) chosen on the basis of their commercial and environmental relevance. Physico-chemical characterization of both primary particles and NP suspensions in artificial sea water-ASW was performed. Hemocyte lysosomal and mitochondrial parameters, oxyradical and nitric oxide production, phagocytic activity, as well as NP uptake, were evaluated. The results show that different n-oxides rapidly elicited differential responses hemocytes in relation to their chemical properties, concentration, behavior in sea water, and interactions with subcellular compartments. These represent the most extensive data so far available on the effects of NPs in the cells of aquatic organisms. The results indicate that Mytilus hemocytes can be utilized as a suitable model for screening the potential effects of NPs in the cells of aquatic invertebrates, and may provide a basis for future experimental work for designing environmentally safer nanomaterials.


Aquatic Toxicology | 2013

In vivo effects of n-TiO2 on digestive gland and immune function of the marine bivalve mytilus galloprovincialis

Cristina Barmo; Caterina Ciacci; Barbara Canonico; Rita Fabbri; Katia Cortese; Teresa Balbi; Antonio Marcomini; Giulio Pojana; Gabriella Gallo; Laura Canesi

Due to the increasing production of nanoparticles (NPs) and their potential release in the aquatic environment, evaluation of their biological impact on aquatic organisms represents a major concern. Suspension feeding invertebrates, in particular bivalve mollusks, may play a role in NP biotransformation and transfer through food webs and may represent a significant target for NP toxicity. In this work, the in vivo effects of titanium dioxide (n-TiO2), one of the most widespread NPs in use, were investigated in the bivalve Mytilus galloprovincialis, largely utilised as a sentinel for marine contamination. Mussels were exposed for 96h to different concentrations of n-TiO2 suspensions (1, 10 and 100μgL(-1)) and multiple responses were evaluated in the digestive gland and immune cells, the haemocytes. In the digestive gland, n-TiO2 affected lysosomal and oxidative stress biomarkers and decreased transcription of antioxidant and immune-related genes. In the haemocytes, n-TiO2 decreased lysosomal membrane stability-LMS and phagocytosis, increased oxyradical production and transcription of antimicrobial peptides; moreover, pre-apoptotic processes were observed. The effects of n-TiO2 on digestive gland and haemocytes were distinct, also depending on the endpoint and on nominal NP concentrations, with many significant responses elicited by the lowest concentrations tested. The results show that n-TiO2, at concentrations close to predicted environmental levels, significantly affected different functional and molecular parameters of mussel digestive gland and immune cells. In particular, the observed changes in immune parameters that represent significant biomarkers of exposure at the organism level suggest that exposure to n-TiO2 may pose a serious risk to mussel health.


Journal of Histochemistry and Cytochemistry | 2009

Advanced Correlative Light/Electron Microscopy: Current Methods and New Developments Using Tokuyasu Cryosections

Katia Cortese; Alberto Diaspro; Carlo Tacchetti

Microscopy is an essential tool for analysis of cellular structures and function. With the advent of new fluorescent probes and super-resolution light microscopy techniques, the study of dynamic processes in living cells has been greatly facilitated. Fluorescence light microscopy provides analytical, quantitative, and three-dimensional (3D) data with emphasis on analysis of live cells using fluorescent markers. Sample preparation is easy and relatively inexpensive, and the use of appropriate tags provides the ability to track specific proteins of interest. Of course, only electron microscopy (EM) achieves the highest definition in terms of ultrastructure and protein labeling. To fill the gap between light microscopy and EM, correlative light and electron microscopy (CLEM) strategies have been developed. In particular, hybrid techniques based upon immuno-EM provide sensitive protein detection combined with high-resolution information on cell structures and protein localization. By adding the third dimension to EM with electron tomography (ET) combined with rapid freezing, CLEM techniques now provide additional tools for quantitative 3D analysis. Here, we overview the major methods applied and highlight the latest advances in the field of CLEM. We then focus on two selected techniques that use cryosections as substrate for combined biomolecular imaging. Finally, we provide a perspective of future developments in the field.


PLOS ONE | 2008

Clathrin and LRP-1-independent constitutive endocytosis and recycling of uPAR

Katia Cortese; Macarena Sahores; Chris D. Madsen; Carlo Tacchetti; Francesco Blasi

Background The urokinase receptor (uPAR/CD87) is highly expressed in malignant tumours. uPAR, as a GPI anchored protein, is preferentially located at the cell surface, where it interacts with its ligands urokinase (uPA) and the extracellular matrix protein vitronectin, thus promoting plasmin generation, cell-matrix interactions and intracellular signalling events. Interaction with a complex formed by uPA and its inhibitor PAI-1 induces cell surface down regulation and recycling of the receptor via the clathrin-coated pathway, a process dependent on the association to LRP-1. Methodology/Principal Findings In this study, we have found that along with the ligand-induced down-regulation, uPAR also internalizes and recycles constitutively through a second pathway that is independent of LRP-1 and clathrin but shares some properties with macropinocytosis. The ligand-independent route is amiloride-sensitive, does not require uPAR partitioning into lipid rafts, is independent of the activity of small GTPases RhoA, Rac1 and Cdc42, and does not require PI3K activity. Constitutively endocytosed uPAR is found in EEA1 positive early/recycling endosomes but does not reach lysosomes in the absence of ligands. Electron microscopy analysis reveals the presence of uPAR in ruffling domains at the cell surface, in macropinosome-like vesicles and in endosomal compartments. Conclusions/Significance These results indicate that, in addition to the ligand-induced endocytosis of uPAR, efficient surface expression and membrane trafficking might also be driven by an uncommon macropinocytic mechanism coupled with rapid recycling to the cell surface.


Traffic | 2008

High data output and automated 3D correlative light-electron microscopy method.

Giuseppe Vicidomini; Maria Cristina Gagliani; Michela Canfora; Katia Cortese; Fabio Frosi; Clara Santangelo; Pier Paolo Di Fiore; Patrizia Boccacci; Alberto Diaspro; Carlo Tacchetti

Correlative light/electron microscopy (CLEM) allows the simultaneous observation of a given subcellular structure by fluorescence light microscopy (FLM) and electron microscopy. The use of this approach is becoming increasingly frequent in cell biology. In this study, we report on a new high data output CLEM method based on the use of cryosections. We successfully applied the method to analyze the structure of rough and smooth Russell bodies used as model systems. The major advantages of our method are (i) the possibility to correlate several hundreds of events at the same time, (ii) the possibility to perform three‐dimensional (3D) correlation, (iii) the possibility to immunolabel both endogenous and recombinantly expressed proteins at the same time and (iv) the possibility to combine the high data analysis capability of FLM with the high precision–accuracy of transmission electron microscopy in a CLEM hybrid morphometry analysis. We have identified and optimized critical steps in sample preparation, defined routines for sample analysis and retracing of regions of interest, developed software for semi/fully automatic 3D reconstruction and defined preliminary conditions for an hybrid light/electron microscopy morphometry approach.


Chemosphere | 2013

Direct effects of Bisphenol A on lipid homeostasis in rat hepatoma cells.

Elena Grasselli; Katia Cortese; Adriana Voci; Laura Vergani; Rita Fabbri; Cristina Barmo; Gabriella Gallo; Laura Canesi

Bisphenol A (BPA), used in the manufacture of polycarbonate plastic and epoxy resin, is one of the most abundant endocrine disruptors in the environment, considered as a xenoestrogen. BPA has recently become of additional public health concern because of increasing evidence of deleterious effects on metabolism. Dietary intake seems the most important route for BPA exposure, followed by rapid biotransformation in the gut and liver and elimination in the urine. Although hepatocytes can represent a significant target for this compound, little is known on the direct effects and mechanisms of action of BPA on lipid homeostasis at the cellular level. In this work, the effects of BPA (0.3-3-30-300 ng mL(-1), 24 h) were investigated in rat FaO hepatoma, a well differentiated liver cell line. At both 30 and 300 ng mL(-1), BPA significantly increased intracellular triglyceride (TAG) content and lipid accumulation in lipid droplets (LDs), without affecting cell viability. The effects of BPA were associated with decreased mRNA levels of the transcription factors Peroxisome Proliferator-Activated Receptor (PPAR) isoforms α and βδ, as well as of their downstream genes acyl-CoA oxidase (AOX) and carnitine palmitoyl transferase (CPT1) involved in lipid oxidation. No increase in transcription of lipogenic genes was observed. BPA also decreased mRNA levels of ApolipoproteinB (apoB) and the extracellular TAG content, indicating alterations in lipid secretion. FaO cells did not express Estrogen Receptor α (ERα and showed a very low expression of ERβ compared to rat liver. All the effects of BPA were prevented by cell pretreatment with Wortmannin, indicating the involvement of phosphatidyl inositol-3 kinase activation. The results demonstrate a direct action of BPA on lipid homeostasis in FaO cells through interference with lipid oxidation and secretion, and add further information on the cellular pathways that can be perturbed by this compound.


Microscopy Research and Technique | 2009

A Novel Approach for Correlative Light Electron Microscopy Analysis

Giuseppe Vicidomini; Maria Cristina Gagliani; Katia Cortese; Jens Krieger; Peter Buescher; Paolo Bianchini; Patrizia Boccacci; Carlo Tacchetti; Alberto Diaspro

Correlative light and electron microscopy (CLEM) is a multimodal technique of increasing utilization in functional, biochemical, and molecular biology. CLEM attempts to combine multidimensional information from the complementary fluorescence light microscopy (FLM) and electron microscopy (EM) techniques to bridge the various resolution gaps. Within this approach the very same cell/structure/event observed at level can be analyzed as well by FLM and EM. Unfortunately, these studies turned out to be extremely time consuming and are not suitable for statistical relevant data. Here, we describe a new CLEM method based on a robust specimen preparation protocol, optimized for cryosections (Tokuyasu method) and on an innovative image processing toolbox for a novel type of multimodal analysis. Main advantages obtained using the proposed CLEM method are: (1) hundred times more cells/structures/events that can be correlated in each single microscopy session; (2) three‐dimensional correlation between FLM and EM, obtained by means of ribbons of serial cryosections and electron tomography microscopy (ETM); (3) high rate of success for each CLEM experiment, obtained implementing protection of samples from physical damage and from loss of fluorescence; (4) compatibility with the classical immunogold and immunofluorescence labeling techniques. This method has been successfully validated for the correlative analysis of Russel Bodies subcellular compartments. Microsc. Res. Tech., 2010.

Collaboration


Dive into the Katia Cortese's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alberto Diaspro

Istituto Italiano di Tecnologia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Enrico Maria Surace

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge