Katia Margiotti
Sapienza University of Rome
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Katia Margiotti.
Clinical Cancer Research | 2009
Robert Snoek; Helen Cheng; Katia Margiotti; Latif A. Wafa; Charmaine A. Wong; Erica Chan Wong; Ladan Fazli; Colleen C. Nelson; Martin Gleave; Paul S. Rennie
Purpose: Progression to the castration-resistant state is the incurable and lethal end stage of prostate cancer, and there is strong evidence that androgen receptor (AR) still plays a central role in this process. We hypothesize that knocking down AR will have a major effect on inhibiting growth of castration-resistant tumors. Experimental Design: Castration-resistant C4-2 human prostate cancer cells stably expressing a tetracycline-inducible AR-targeted short hairpin RNA (shRNA) were generated to directly test the effects of AR knockdown in C4-2 human prostate cancer cells and tumors. Results:In vitro expression of AR shRNA resulted in decreased levels of AR mRNA and protein, decreased expression of prostate-specific antigen (PSA), reduced activation of the PSA-luciferase reporter, and growth inhibition of C4-2 cells. Gene microarray analyses revealed that AR knockdown under hormone-deprived conditions resulted in activation of genes involved in apoptosis, cell cycle regulation, protein synthesis, and tumorigenesis. To ensure that tumors were truly castration-resistant in vivo, inducible AR shRNA expressing C4-2 tumors were grown in castrated mice to an average volume of 450 mm3. In all of the animals, serum PSA decreased, and in 50% of them, there was complete tumor regression and disappearance of serum PSA. Conclusions: Whereas castration is ineffective in castration-resistant prostate tumors, knockdown of AR can decrease serum PSA, inhibit tumor growth, and frequently cause tumor regression. This study is the first direct evidence that knockdown of AR is a viable therapeutic strategy for treatment of prostate tumors that have already progressed to the castration-resistant state.
The Prostate | 2009
Jennifer A. Locke; Emma S. Guns; Melanie Lehman; Susan Ettinger; Amina Zoubeidi; Amy A. Lubik; Katia Margiotti; Ladan Fazli; Hans Adomat; Kishor M. Wasan; Martin Gleave; Colleen C. Nelson
De novo androgen synthesis and subsequent androgen receptor (AR) activation has recently been shown to contribute to castration‐resistant prostate cancer (CRPC) progression. Herein we provide evidence that fatty acids (FA) can trigger androgen synthesis within steroid starved prostate cancer (CaP) tumor cells.
European Journal of Human Genetics | 2015
Valentina Pinna; Valentina Lanari; Paola Daniele; Federica Consoli; Emanuele Agolini; Katia Margiotti; Irene Bottillo; Isabella Torrente; Alessandro Bruselles; Caterina Fusilli; Anna Ficcadenti; Sara Bargiacchi; Eva Trevisson; Monica Forzan; Sandra Giustini; Chiara Leoni; Giuseppe Zampino; Maria Cristina Digilio; Bruno Dallapiccola; Maurizio Clementi; Marco Tartaglia; Alessandro De Luca
Analysis of 786 NF1 mutation-positive subjects with clinical diagnosis of neurofibromatosis type 1 (NF1) allowed to identify the heterozygous c.5425C>T missense variant (p.Arg1809Cys) in six (0.7%) unrelated probands (three familial and three sporadic cases), all exhibiting a mild form of disease. Detailed clinical characterization of these subjects and other eight affected relatives showed that all individuals had multiple cafè-au-lait spots, frequently associated with skinfold freckling, but absence of discrete cutaneous or plexiform neurofibromas, Lisch nodules, typical NF1 osseous lesions or symptomatic optic gliomas. Facial features in half of the individuals were suggestive of Noonan syndrome. Our finding and revision of the literature consistently indicate that the c.5425C>T change is associated with a distinctive, mild form of NF1, providing new data with direct impact on genetic counseling and patient management.
Molecular Cancer | 2007
Katia Margiotti; Latif A. Wafa; Helen Cheng; Giuseppe Novelli; Colleen C. Nelson; Paul S. Rennie
BackgroundThe androgen receptor is a ligand-induced transcriptional factor, which plays an important role in normal development of the prostate as well as in the progression of prostate cancer to a hormone refractory state. We previously reported the identification of a novel AR coactivator protein, L-dopa decarboxylase (DDC), which can act at the cytoplasmic level to enhance AR activity. We have also shown that DDC is a neuroendocrine (NE) marker of prostate cancer and that its expression is increased after hormone-ablation therapy and progression to androgen independence. In the present study, we generated tetracycline-inducible LNCaP-DDC prostate cancer stable cells to identify DDC downstream target genes by oligonucleotide microarray analysis.ResultsComparison of induced DDC overexpressing cells versus non-induced control cell lines revealed a number of changes in the expression of androgen-regulated transcripts encoding proteins with a variety of molecular functions, including signal transduction, binding and catalytic activities. There were a total of 35 differentially expressed genes, 25 up-regulated and 10 down-regulated, in the DDC overexpressing cell line. In particular, we found a well-known androgen induced gene, TMEPAI, which wasup-regulated in DDC overexpressing cells, supporting its known co-activation function. In addition, DDC also further augmented the transcriptional repression function of AR for a subset of androgen-repressed genes. Changes in cellular gene transcription detected by microarray analysis were confirmed for selected genes by quantitative real-time RT-PCR.ConclusionTaken together, our results provide evidence for linking DDC action with AR signaling, which may be important for orchestrating molecular changes responsible for prostate cancer progression.
Pharmacogenomics | 2007
Franca D’Amico; Michela Biancolella; Katia Margiotti; Juergen K. V. Reichardt; Giuseppe Novelli
Prostate cancer is the most frequent male malignancy diagnosed in western countries and the second leading cause of cancer-related deaths. The growth and function of the prostate gland depends on androgens. Owing to the importance of androgens in prostate development, genes involved in androgen biosynthesis and metabolism have been extensively studied. In this review, we address recent progress toward the use of inherited and acquired genetic variants to predict susceptibility and clinical outcomes of prostate cancer patients. Many of these genetic variants involve several genes related to the biosynthesis and metabolism of androgens, such as steroid-5-alpha-reductase, alpha polypeptide 2 (SRD5A2), cytochrome P450 (CYP)19A1, CYP17A1, hydroxy-delta-5-steroid dehydrogenase, 3 beta- and steroid delta-isomerase 2 (HSD3B2) and androgen receptor (AR). With increasing knowledge, it may be possible to distinguish indolent from aggressive prostate tumors by molecular fingerprinting. Furthermore, with the emergence of new investigative tools, such as microarray platforms and comparative genomic hybridization (CGH) array, a variety of new genomic biomarkers will be available in the future to provide accurate prognostic and monitoring solutions for individualized patient care.
Gene Expression | 2004
Francesca Amati; Michela Biancolella; Maria Rosaria D'Apice; Stefano Gambardella; Ruggiero Mango; Paolo Sbraccia; Monica D'Adamo; Katia Margiotti; Annamaria Nardone; Marc Lewis; Giuseppe Novelli
Mandibuloacral dysplasia (MAD) is a rare autosomal recessive disorder caused basically by a missense mutation within the LMNA gene, which encodes for lamin A/C. We have used gene expression profiling to characterize the specificity of molecular changes induced by the prevalent MAD mutation (R527H). A total of 5531 transcripts expressed in human dermis were investigated in two MAD patients, both carrying the R527H mutation, and three control subjects (age and sex matched). Transcription profiles revealed a differential expression in MAD vs. control fibroblasts in at least 1992 genes. Sixty-seven of these genes showed a common altered pattern in both patients with a threshold expression level >+/-2. Nevertheless, a large number of these genes (43.3%) are ESTs or encode for protein with unknown function; the other genes are involved in biological processes or pathways such as cell adhesion, cell cycle, cellular metabolism, and transcription. Quantitative RT-PCR was applied to validate the microarray results (R2= 0.76). Analysis of the effect of the prevalent MAD mutation (R527H) over the transcriptional pattern of genes expressed in the human dermis showed that this LMNA gene mutation has pleiotropic effects on a limited number of genes. Further characterization of these effects might contribute to understanding the molecular pathogenesis of this disorder.
American Journal of Medical Genetics Part A | 2015
Valentina Guida; Lorenzo Sinibaldi; Mario Pagnoni; Laura Bernardini; Sara Loddo; Katia Margiotti; Maria Cristina Digilio; Maria Teresa Fadda; Bruno Dallapiccola; Giorgio Iannetti; De Luca Alessandro
Oculo auriculo vertebral spectrum (OAVS; OMIM 164210) is a clinically and genetically heterogeneous disorder originating from an abnormal development of the first and second branchial arches. Main clinical characteristics include defects of the aural, oral, mandibular, and vertebral development. Anomalies of the cardiac, pulmonary, renal, skeletal, and central nervous systems have also been described. We report on a 25‐year‐old male showing a spectrum of clinical manifestations fitting the OAVS diagnosis: hemifacial microsomia, asymmetric mandibular hypoplasia, preauricular pits and tags, unilateral absence of the auditory meatus, dysgenesis of the inner ear and unilateral microphthalmia. A SNP‐array analysis identified a de novo previously unreported microduplication spanning 723 Kb on chromosome 3q29. This rearrangement was proximal to the 3q29 microdeletion/microduplication syndrome region, and encompassed nine genes including ATP13A3 and XXYLT1, which are involved in the organogenesis and regulation of the Notch pathway, respectively. The present observation further expands the spectrum of genomic rearrangements associated to OAVS, underlying the value of array‐based studies in patients manifesting OAVS features.
Pediatric and Developmental Pathology | 2012
Kathrin Ludwig; Roberto Salmaso; Erich Cosmi; Loredana Iaria; Alessandro De Luca; Katia Margiotti; Valentina Citton; Renzo Manara; Massimo Rugge
Cantrells pentalogy (CP) is a rare, mainly sporadic spectrum of congenital midline thoracoabdominal defects that includes sternal anomalies, ventral diaphragmatic hernia, partial absence of the pericardium, supraumbilical abdominal wall defects, and congenital heart malformations. The approximate incidence is 1 in 100 000, with a 2:1 male predominance. A 25-year-old pregnant woman was referred to the Prenatal Diagnosis Unit of the University Hospital of Padua for multiple congenital malformations at 21 weeks of gestation. A level 2 ultrasound scan was performed and confirmed the presence of multiple anomalies compatible with the diagnosis of CP associated with complete ectopia cordis. Fetal autopsy furthermore revealed asplenia, which usually presents as part of the heterotaxia spectrum. To our knowledge, an association of CP and complete ectopia cordis with asplenia has never been reported so far.
Fetal and Pediatric Pathology | 2013
Kathrin Ludwig; Marco Pizzi; Matteo Fassan; Cecilia Daolio; Katia Margiotti; Federica Consoli; Roberto Salmaso; Massimo Rugge
Triploidy occurs in about 1 to 3% of clinically recognizable pregnancies and is typically associated with growth restriction, craniofacial dysmorphisms and congenital anomalies. We report the case of a female fetus with prenatal diagnosis of complete triploidy, polysplenia, bilateral cleft-palate, horseshoe-kidneys and bilateral club-feet. Whereas bilateral cleft-palate, horseshoe-kidneys and bilateral club feet are known to be part of the triploidy-associated malformation spectrum, polysplenia, which usually occurs as part of the heterotaxia spectrum, has never been associated with triploidy. An amplification of the triploidy phenotype or a “double trouble”.
Archives of Oral Biology | 2017
Katia Margiotti; Giulia Pascolini; Federica Consoli; Valentina Guida; Carlo Di Bonaventura; Anna Teresa Giallonardo; Antonio Pizzuti; Alessandro De Luca
OBJECTIVE Gingival overgrowth is a side effect associated with some distinct classes of drugs, such as anticonvulsants, immunosuppressants, and calcium channel blockers. One of the main drugs associated with gingival overgrowth is the antiepileptic phenytoin, which affects gingival tissues by altering extracellular matrix metabolism. It has been shown that mutation of human SOS1 gene is responsible for a rare hereditary gingival fibromatosis type 1, a benign gingival overgrowth. The aim of the present study is to evaluate the possible contribution of SOS1 mutation to gingival overgrowth-related phenotype. DESIGN We selected and screened for mutations a group of 24 epileptic patients who experienced significant gingival overgrowth following phenytoin therapy. Mutation scanning was carried out by denaturing high-performance liquid chromatography analysis of the entire coding region of the SOS1 gene. Novel identified variants were analyzed in-silico by using Alamut Visual mutation interpretation software, and comparison with normal control group was done. RESULTS Mutation scanning of the entire coding sequence of SOS1 gene identified seven intronic variants and one new exonic substitution (c.138G>A). The seven common intronic variants were not considered to be of pathogenic importance. The exonic substitution c.138G>A was found to be absent in 100 ethnically matched normal control chromosomes, but was not expected to have functional significance based on prediction bioinformatics tools. CONCLUSIONS This study represents the first mutation analysis of the SOS1 gene in phenytoin-induced gingival overgrowth epileptic patients. Present results suggest that obvious pathogenic mutations in the SOS1 gene do not represent a common mechanism underlying phenytoin-induced gingival overgrowth in epileptic patients; other mechanisms are likely to be involved in the pathogenesis of this drug-induced phenotype.