Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Katia Martina is active.

Publication


Featured researches published by Katia Martina.


Journal of Medicinal Chemistry | 2008

Cdc7 Kinase Inhibitors : Pyrrolopyridinones as Potential Antitumor Agents. 1. Synthesis and Structure-Activity Relationships

Ermes Vanotti; Raffaella Amici; Alberto Bargiotti; Jens Berthelsen; Roberta Bosotti; Antonella Ciavolella; Alessandra Cirla; Cinzia Cristiani; Roberto D'alessio; Barbara Forte; Antonella Isacchi; Katia Martina; Maria Menichincheri; Antonio Molinari; Alessia Montagnoli; Paolo Orsini; Antonio Pillan; Fulvia Roletto; Alessandra Scolaro; Marcellino Tibolla; Barbara Valsasina; Mario Varasi; Daniele Volpi; Corrado Santocanale

Cdc7 kinase is an essential protein that promotes DNA replication in eukaryotic organisms. Genetic evidence indicates that Cdc7 inhibition can cause selective tumor-cell death in a p53-independent manner, supporting the rationale for developing Cdc7 small-molecule inhibitors for the treatment of cancers. In this paper, the synthesis and structure-activity relationships of 2-heteroaryl-pyrrolopyridinones, the first potent Cdc7 kinase inhibitors, are described. Starting from 2-pyridin-4-yl-1,5,6,7-tetrahydro-pyrrolo[3,2-c]pyridin-4-one, progress toward a simple scaffold, tailored for Cdc7 inhibition, is reported.


Journal of Medicinal Chemistry | 2009

First Cdc7 kinase inhibitors: pyrrolopyridinones as potent and orally active antitumor agents. 2. Lead discovery.

Maria Menichincheri; Alberto Bargiotti; Jens Berthelsen; Jay Aaron Bertrand; Roberto Bossi; Antonella Ciavolella; Alessandra Cirla; Cinzia Cristiani; Croci; Roberto D'alessio; Marina Fasolini; Francesco Fiorentini; Barbara Forte; Antonella Isacchi; Katia Martina; A Molinari; Alessia Montagnoli; Paolo Orsini; Fabrizio Orzi; Enrico Pesenti; Daniele Pezzetta; Antonio Pillan; Italo Poggesi; Fulvia Roletto; Alessandra Scolaro; Marco Tato; Marcellino Tibolla; Barbara Valsasina; Mario Varasi; Daniele Volpi

Cdc7 kinase is a key regulator of the S-phase of the cell cycle, known to promote the activation of DNA replication origins in eukaryotic organisms. Cdc7 inhibition can cause tumor-cell death in a p53-independent manner, supporting the rationale for developing Cdc7 inhibitors for the treatment of cancer. In this paper, we conclude the structure-activity relationships study of the 2-heteroaryl-pyrrolopyridinone class of compounds that display potent inhibitory activity against Cdc7 kinase. Furthermore, we also describe the discovery of 89S, [(S)-2-(2-aminopyrimidin-4-yl)-7-(2-fluoro-ethyl)-1,5,6,7-tetrahydropyrrolo[3,2-c]pyridin-4-one], as a potent ATP mimetic inhibitor of Cdc7. Compound 89S has a Ki value of 0.5 nM, inhibits cell proliferation of different tumor cell lines with an IC50 in the submicromolar range, and exhibits in vivo tumor growth inhibition of 68% in the A2780 xenograft model.


Chemsuschem | 2011

Efficient synthetic protocols in glycerol under heterogeneous catalysis.

Giancarlo Cravotto; Laura Orio; Emanuela Calcio Gaudino; Katia Martina; Dorith Tavor; Adi Wolfson

The massive increase in glycerol production from the transesterification of vegetable oils has stimulated a large effort to find novel uses for this compound. Hence, the use of glycerol as a solvent for organic synthesis has drawn particular interest. Drawbacks of this green and renewable solvent are a low solubility of highly hydrophobic molecules and a high viscosity, which often requires the use of a fluidifying co-solvent. These limitations can be easily overcome by performing reactions under high-intensity ultrasound and microwaves in a stand-alone or combined manner. These non-conventional techniques facilitate and widen the use of glycerol as a solvent in organic synthesis. Glycerol allows excellent acoustic cavitation even at high temperatures (70-100 °C), which is otherwise negligible in water. Herein, we describe three different types of applications: 1) the catalytic transfer hydrogenation of benzaldehyde to benzyl alcohol in which glycerol plays the dual role of the solvent and hydrogen donor; 2) the palladium-catalyzed Suzuki cross-coupling; and (3) the Barbier reaction. In all cases glycerol proved to be a greener, less expensive, and safer alternative to the classic volatile organic solvents.


Journal of Medicinal Chemistry | 2010

Cdc7 Kinase Inhibitors: 5-Heteroaryl-3-Carboxamido-2-Aryl Pyrroles as Potential Antitumor Agents. 1. Lead Finding

Maria Menichincheri; Clara Albanese; Cristina Alli; Dario Ballinari; Alberto Bargiotti; Marina Caldarelli; Antonella Ciavolella; Alessandra Cirla; Maristella Colombo; Francesco Colotta; Valter Croci; Roberto D’Alessio; Matteo D’Anello; Antonella Ermoli; Francesco Fiorentini; Barbara Forte; Arturo Galvani; Patrizia Giordano; Antonella Isacchi; Katia Martina; Antonio Molinari; Jürgen Moll; Alessia Montagnoli; Paolo Orsini; Fabrizio Orzi; Enrico Pesenti; Antonio Pillan; Fulvia Roletto; Alessandra Scolaro; Marco Tato

Cdc7 serine/threonine kinase is a key regulator of DNA synthesis in eukaryotic organisms. Cdc7 inhibition through siRNA or prototype small molecules causes p53 independent apoptosis in tumor cells while reversibly arresting cell cycle progression in primary fibroblasts. This implies that Cdc7 kinase could be considered a potential target for anticancer therapy. We previously reported that pyrrolopyridinones (e.g., 1) are potent and selective inhibitors of Cdc7 kinase, with good cellular potency and in vitro ADME properties but with suboptimal pharmacokinetic profiles. Here we report on a new chemical class of 5-heteroaryl-3-carboxamido-2-substituted pyrroles (1A) that offers advantages of chemistry diversification and synthetic simplification. This work led to the identification of compound 18, with biochemical data and ADME profile similar to those of compound 1 but characterized by superior efficacy in an in vivo model. Derivative 18 represents a new lead compound worthy of further investigation toward the ultimate goal of identifying a clinical candidate.


MedChemComm | 2013

Microwave-assisted synthesis of N-heterocycles in medicinal chemistry

Davide Garella; Emily Borretto; Antonella Di Stilo; Katia Martina; Giancarlo Cravotto; Pedro Cintas

The syntheses of almost all N-heterocycles have now been successfully performed under microwave irradiation and have provided significant improvements in the reaction time and efficiency. The peculiar properties of dielectric heating give it the ability to strongly promote cyclocondensation, cycloaddition and selective N-heterocycle functionalisation and it has, therefore, very much caught the attention of the medicinal chemistry community. In this work, we present an overview of recent literature and technical advances in this research field with the aim of providing insight into the applications of microwave-assisted synthesis in the preparation of the main drug categories that contain N-heterocycle scaffolds.


Journal of Chromatography A | 2010

New asymmetrical per-substituted cyclodextrins (2-O-methyl-3-O-ethyl- and 2-O-ethyl-3-O-methyl-6-O-t-butyldimethylsilyl-β-derivatives) as chiral selectors for enantioselective gas chromatography in the flavour and fragrance field

Carlo Bicchi; Cecilia Cagliero; Erica Liberto; Barbara Sgorbini; Katia Martina; Giancarlo Cravotto; Patrizia Rubiolo

Asymmetrically substituted 6(I-VII)-O-t-butyldimethylsilyl(TBDMS)-3(I-VII)-O-ethyl-2(I-VII)-O-methyl-beta-cyclodextrin (MeEt-CD) and 6(I-VII)-O-TBDMS-2(I-VII)-O-ethyl-3(I-VII)-O-methyl-beta-cyclodextrin (EtMe-CD) were synthesised to evaluate the role of the substitution pattern in positions 2 and 3 on the enantioselectivity, in particular in view of their application to routine analysis in fast enantioselective gas chromatography (Es-GC). The chromatographic properties and enantioselectivities of the new derivatives were tested by separating the enantiomers of a series of medium-to-high volatility racemates in the flavour and fragrance field, and compared to those of the corresponding symmetrically substituted 6(I-VII)-O-TBDMS-2(I-VII),3(I-VII)-O-methyl-beta-CD (MeMe-CD) and 6(I-VII)-O-TBDMS-2(I-VII),3(I-VII)-O-ethyl-beta-CD (EtEt-CD), and were then applied to analysis of real-world essential oil (e.o.) samples. A new synthetic process including the sonochemical approach to obtain synthetic reproducibility and significant yields of the per-substituted derivatives with acceptable reaction times was developed. The results show that asymmetrically substituted methyl/ethyl CDs compared to the methyl or ethyl symmetrical derivatives in general provide better enantioselectivity in terms of both enantiomer resolution and number of separated chiral compounds, and show how the substitution pattern in positions 2 and 3 of the CD ring can influence the separation. Moreover, these new CD derivatives with better enantioselectivity are also shown to be very useful in routine analysis for the exhaustive control of samples containing several chiral characterizing markers in a single run.


RSC Advances | 2016

Recent advances and perspectives in the synthesis of bioactive coumarins

E. Calcio Gaudino; Silvia Tagliapietra; Katia Martina; G. Palmisano; Giancarlo Cravotto

The impressive pharmacological properties shown by a number of coumarins have led to extraordinarily large emphasis being placed on the design of more efficient and greener synthetic procedures to produce them. The increasing use of enabling technologies, such as microwaves, ultrasound, new heterogeneous catalysts and greener solvents in recent years has made access to coumarin derivatives much simpler. This review will highlight the most recent synthetic advances that make use of non-conventional methods and energy sources and some perspectives for the future, in particular the synthesis of new hybrid molecules bearing a coumarin moiety with a dual mode of biological action.


Current Nutrition & Food Science | 2013

Recent Applications of Cyclodextrins as Food Additives and in Food Processing

Katia Martina; Arianna Binello; Dale Lawson; Laszlo Jicsinszky; Giancarlo Cravotto

Nowadays the application of cyclodextrin-assisted molecular encapsulation in foods offers many advantages. Cyclodextrins, their derivatives and their cross-linked polymers can all improve the quality of food in storage, remove specific components and stabilize and increase the presence of components that are important for a healthy diet. The application of cyclodextrins and their complexes in packaging materials can help not only transport of previously nontransportable foods, but may also prevent, or at least decelerate, the spread of microbial infections. The number of publications, particularly analytical papers, on this matter is constantly increasing. Although the application of modern analytical methods and equipment allows for the quantitation of previously subjectively characterized parameters, bio-sensory methods are still important. The application of cyclodextrins in the nutraceutical industry has many advantages; however, some side effects connected with the inclusion complexation ability of these carbohydrates should lead scientists to study cases on an individual basis. Recent developments in the major fields of cyclodextrin related food research are herein summarized.


Beilstein Journal of Organic Chemistry | 2014

Pd/C-catalyzed aerobic oxidative esterification of alcohols and aldehydes: a highly efficient microwave-assisted green protocol.

Marina Caporaso; Giancarlo Cravotto; Spyros Georgakopoulos; George Heropoulos; Katia Martina; Silvia Tagliapietra

Summary We herein describe an environmentally friendly microwave-assisted oxidative esterification of alcohols and aldehydes in the presence of molecular oxygen and a heterogeneous catalysis (Pd/C, 5 mol %). This efficient and ligandless conversion procedure does not require the addition of an organic hydrogen acceptor. The reaction rate is strongly enhanced by mild dielectric heating. Furthermore, it is a versatile green procedure which generally enables the isolation of esters to be carried out by simple filtration in almost quantitative yields.


Molecules | 2015

Solvent-Free Copper-Catalyzed Azide-Alkyne Cycloaddition under Mechanochemical Activation

Katia Martina; Francesca Baricco; Laura Rotolo; Giancarlo Cravotto

The ball-mill-based mechanochemical activation of metallic copper powder facilitates solvent-free alkyne-azide click reactions (CuAAC). All parameters that affect reaction rate (i.e., milling time, revolutions/min, size and milling ball number) have been optimized. This new, efficient, facile and eco-friendly procedure has been tested on a number of different substrates and in all cases afforded the corresponding 1,4-disubstituted 1,2,3-triazole derivatives in high yields and purities. The final compounds were isolated in almost quantitative overall yields after simple filtration, making this procedure facile and rapid. The optimized CuAAC protocol was efficiently applied even with bulky functionalized β-cyclodextrins (β-CD) and scaled-up to 10 g of isolated product.

Collaboration


Dive into the Katia Martina's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maria Menichincheri

National University of Ireland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paolo Orsini

National University of Ireland

View shared research outputs
Researchain Logo
Decentralizing Knowledge