Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Katie Beierl is active.

Publication


Featured researches published by Katie Beierl.


American Journal of Clinical Pathology | 2014

Clinical Validation of KRAS, BRAF, and EGFR Mutation Detection Using Next-Generation Sequencing

Ming Tseh Lin; Stacy Mosier; Michele Thiess; Katie Beierl; Marija Debeljak; Li Hui Tseng; Guoli Chen; Srinivasan Yegnasubramanian; Hao Ho; Leslie Cope; Sarah J. Wheelan; Christopher D. Gocke; James R. Eshleman

OBJECTIVES To validate next-generation sequencing (NGS) technology for clinical diagnosis and to determine appropriate read depth. METHODS We validated the KRAS, BRAF, and EGFR genes within the Ion AmpliSeq Cancer Hotspot Panel using the Ion Torrent Personal Genome Machine (Life Technologies, Carlsbad, CA). RESULTS We developed a statistical model to determine the read depth needed for a given percent tumor cellularity and number of functional genomes. Bottlenecking can result from too few input genomes. By using 16 formalin-fixed, paraffin-embedded (FFPE) cancer-free specimens and 118 cancer specimens with known mutation status, we validated the six traditional analytic performance characteristics recommended by the Next-Generation Sequencing: Standardization of Clinical Testing Working Group. Baseline noise is consistent with spontaneous and FFPE-induced C:G→T:A deamination mutations. CONCLUSIONS Redundant bioinformatic pipelines are essential, since a single analysis pipeline gave false-negative and false-positive results. NGS is sufficiently robust for the clinical detection of gene mutations, with attention to potential artifacts.


Modern Pathology | 2014

Characteristics of hydatidiform moles: analysis of a prospective series with p57 immunohistochemistry and molecular genotyping

Natalie Banet; Cheryl DeScipio; Kathleen M. Murphy; Katie Beierl; Emily Adams; Russell Vang; Brigitte M. Ronnett

Immunohistochemical analysis of cyclin-dependent kinase inhibitor 1C (CDKN1C, p57, Kip2) expression and molecular genotyping accurately classify hydatidiform moles into complete and partial types and distinguish these from non-molar specimens. Characteristics of a prospective series of all potentially molar specimens encountered in a large gynecologic pathology practice are summarized. Initially, all specimens were subjected to both analyses; this was later modified to triage cases for genotyping based on p57 results: p57-negative cases diagnosed as complete hydatidiform moles without genotyping; all p57-positive cases genotyped. Of the 678 cases, 645 were definitively classified as complete hydatidiform mole (201), partial hydatidiform mole (158), non-molar (272), and androgenetic/biparental mosaic (14); 33 were unsatisfactory, complex, or problematic. Of the 201 complete hydatidiform moles, 104 were p57-negative androgenetic and an additional 95 were p57-negative (no genotyping), 1 was p57-positive (retained maternal chromosome 11) androgenetic, and 1 was p57-non-reactive androgenetic; 90 (85%) of the 106 genotyped complete hydatidiform moles were monospermic and 16 were dispermic. Of the 158 partial hydatidiform moles, 155 were diandric triploid, with 154 p57-positive, 1 p57-negative (loss of maternal chromosome 11), and 1 p57-non-reactive; 3 were triandric tetraploid, with 2 p57-positive and 1 p57-negative (loss of maternal chromosome 11). Of 155 diandric triploid partial hydatidiform moles, 153 (99%) were dispermic and 2 were monospermic. Of the 272 non-molar specimens, 259 were p57-positive biparental diploid, 5 were p57-positive digynic triploid, 2 were p57-negative biparental diploid (no morphological features of biparental hydatidiform mole), and 6 were p57-non-reactive biparental diploid. Of the 14 androgenetic/biparental mosaics with discordant p57 expression, 6 were uniformly mosaic and 8 had a p57-negative androgenetic molar component. p57 expression is highly correlated with genotyping, serves as a reliable marker for diagnosis of complete hydatidiform moles, and identifies androgenetic cell lines in mosaic conceptions. Cases with aberrant and discordant p57 expression can be correctly classified by genotyping.


Cancer immunology research | 2015

PD-L1 Expression in Melanocytic Lesions Does Not Correlate with the BRAF V600E Mutation

Nemanja Rodić; Robert A. Anders; James R. Eshleman; Ming-Tseh Lin; Haiying Xu; Jung H. Kim; Katie Beierl; Shuming Chen; Brandon Luber; Hao Wang; Suzanne L. Topalian; Drew M. Pardoll; Janis M. Taube

Rodić and colleagues analyzed archival melanocytic lesions and cultured melanomas and found no correlation between melanocyte PD-L1 expression and BRAF V600E mutation, indicating that distinct biomarkers should be used to select patients for BRAF inhibitor and PD-1/PD-L1 checkpoint blockade therapies. PD-L1 expression in melanoma correlates with response to PD-1 pathway–blocking antibodies. Aberrant tumor-cell PD-L1 expression may be oncogene driven and/or induced by IFNγ. Melanomas express PD-L1 in association with tumor-infiltrating lymphocytes (TIL), but the potential contribution of the BRAF V600E mutation (BRAFmut) to induced PD-L1 expression has not been determined. Fifty-two archival melanocytic lesions were assessed for PD-L1 expression, TIL infiltration, and BRAFmut simultaneously. IFNγ-induced PD-L1 expression in cultured melanomas was assessed in parallel according to BRAF status. Melanocyte PD-L1 expression was observed in 40% of specimens, and BRAFmut was observed in 42% of specimens, but no significant concordance was found between these variables. Almost all melanocytes displaying PD-L1 expression were observed to be adjacent to TILs, irrespective of BRAF status. TIL− lesions were not more likely to be associated with BRAFmut, when compared with TIL+ lesions. Baseline expression of PD-L1 by melanoma cell lines was virtually nil, regardless of BRAFmut status, and the intensity of IFN-induced PD-L1 expression in melanoma cell lines likewise did not correlate with BRAF mutational status. PD-L1 expression in melanocytic lesions does not correlate with the BRAFmut. Thus, distinct populations of melanoma patients will likely benefit from BRAF inhibitors versus PD-1 pathway blockade. Cancer Immunol Res; 3(2); 110–5. ©2014 AACR.


Human Pathology | 2013

The frequency of KRAS and BRAF mutations in intrahepatic cholangiocarcinomas and their correlation with clinical outcome

S.P. Robertson; Omar Hyder; Rebecca M. Dodson; Suresh K. Nayar; Justin Poling; Katie Beierl; James R. Eshleman; Ming Tseh Lin; Timothy M. Pawlik; Robert A. Anders

The incidence of intrahepatic cholangiocarcinoma is increasing worldwide. The prognosis of intrahepatic cholangiocarcinoma is poor, and a better understanding of intrahepatic cholangiocarcinoma tumor biology is needed to more accurately predict clinical outcome and to suggest potential targets for more effective therapies. v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (KRAS) and BRAF are frequently mutated oncogenes that promote carcinogenesis in a variety of tumor types. In this study, we analyze a large set of intrahepatic cholangiocarcinoma tumors (n = 54) for mutations in these genes and compare the clinical outcomes of wild type versus KRAS and BRAF mutant cases. Of 54 cases, 7.4% were mutant for KRAS, 7.4% were mutant for BRAF, and these were mutually exclusive. These mutant cases were associated with a higher tumor stage at time of resection and a greater likelihood of lymph node involvement. These cases were also associated with a worse long-term overall survival. Therefore, testing for KRAS and BRAF mutations could be a valuable adjunct in improving both prognosis and outcome stratification among patients with intrahepatic cholangiocarcinoma.


The Journal of Molecular Diagnostics | 2014

False Positives in Multiplex PCR-Based Next-Generation Sequencing Have Unique Signatures

Chad M. McCall; Stacy Mosier; Michele Thiess; Marija Debeljak; Aparna Pallavajjala; Katie Beierl; Kristen L. Deak; Michael B. Datto; Christopher D. Gocke; Ming Tseh Lin; James R. Eshleman

Next-generation sequencing shows great promise by allowing rapid mutational analysis of multiple genes in human cancers. Recently, we implemented the multiplex PCR-based Ion AmpliSeq Cancer Hotspot Panel (>200 amplicons in 50 genes) to evaluate EGFR, KRAS, and BRAF in lung and colorectal adenocarcinomas. In 10% of samples, automated analysis identified a novel G873R substitution mutation in EGFR. By examining reads individually, we found this mutation in >5% of reads in 50 of 291 samples and also found similar events in 18 additional amplicons. These apparent mutations are present only in short reads and within 10 bases of either end of the read. We therefore hypothesized that these were from panel primers promiscuously binding to nearly complementary sequences of nontargeted amplicons. Sequences around the mutations matched primer binding sites in the panel in 18 of 19 cases, thus likely corresponding to panel primers. Furthermore, because most primers did not show this effect, we demonstrated that next-generation sequencing may be used to better design multiplex PCR primers through iterative elimination of offending primers to minimize mispriming. Our results indicate the need for careful sequence analysis to avoid false-positive mutations that can arise in multiplex PCR panels. The AmpliSeq Cancer panel is a valuable tool for clinical diagnostics, provided awareness of potential artifacts.


International Journal of Gynecological Pathology | 2013

Characterization of androgenetic/biparental mosaic/chimeric conceptions, including those with a molar component: Morphology, p57 immnohistochemistry, molecular genotyping, and risk of persistent gestational trophoblastic disease

Gloria H. Lewis; Cheryl DeScipio; Kathleen M. Murphy; Lisa Haley; Katie Beierl; Stacy Mosier; Sharon Tandy; Debra S. Cohen; Alice Lytwyn; Laurie Elit; Russell Vang; Brigitte M. Ronnett

Recent studies have demonstrated the value of ancillary techniques, including p57 immunohistochemistry and short tandem repeat genotyping, for distinguishing hydatidiform moles (HM) from nonmolar specimens and for subtyping HMs as complete hydatidiform moles (CHM) and partial hydatidiform moles (PHM). With rare exceptions, CHMs are p57-negative and androgenetic diploid; partial hydatidiform moles are p57-positive and diandric triploid; and nonmolar specimens are p57-positive and biparental diploid. Androgenetic/biparental mosaic/chimeric conceptions can have morphologic features that overlap with HMs but are genetically distinct. This study characterizes 11 androgenetic/biparental mosaic/chimeric conceptions identified in a series of 473 products of conception specimens subjected to p57 immunohistochemistry and short tandem repeat genotyping. Fluorescence in situ hybridization was performed on 10 to assess ploidy. All cases were characterized by hydropically enlarged, variably sized and shaped villi. In 5 cases, the villi lacked trophoblastic hyperplasia, whereas in 6 there was a focal to extensive villous component with trophoblastic hyperplasia and features of CHM. The villi lacking trophoblastic hyperplasia were characterized by discordant p57 expression within individual villi (p57-positive cytotrophoblast and p57-negative stromal cells), whereas the villous components having trophoblastic hyperplasia were uniformly p57-negative in both cell types. Short tandem repeat genotyping of at least 2 villous areas in each case demonstrated an excess of paternal alleles in all regions, with variable paternal:maternal allele ratios (usually >2:1); pure androgenetic diploidy was identified in those cases with a sufficiently sized villous component having trophoblastic hyperplasia and features of CHM. Fluorescence in situ hybridization demonstrated uniform diploidy in 7 cases, including 4 of 5 tested cases with trophoblastic hyperplasia and 3 of 5 cases without trophoblastic hyperplasia. Two cases without trophoblastic hyperplasia had uniformly diploid villous stromal cells but 1 had triploid and 1 had tetraploid cytotrophoblast; 1 case with trophoblastic hyperplasia had uniformly diploid villous stromal cells but a mixture of diploid, triploid, and tetraploid cytotrophoblast. In 3 cases with a CHM component, persistent gestational trophoblastic disease developed. These results indicate that androgenetic/biparental mosaic/chimeric conceptions are most often an admixture of androgenetic diploid (p57-negative) and biparental diploid (p57-positive) cell lines but some have localized hyperdiploid components. Recognition of their distinctive p57 expression patterns and genotyping results can prevent misclassification as typical CHMs, PHMs, or nonmolar specimens. The presence of androgenetic cell lines, particularly in those with a purely androgenetic CHM component, warrants follow-up because of some risk of persistent gestational trophoblastic disease.


The Journal of Molecular Diagnostics | 2012

A Virtual Pyrogram Generator to Resolve Complex Pyrosequencing Results

Guoli Chen; Matthew T. Olson; Alan O'Neill; Alexis L. Norris; Katie Beierl; Shuko Harada; Marija Debeljak; Keila Rivera-Roman; Samantha Finley; Amanda Stafford; Christopher D. Gocke; Ming Tseh Lin; James R. Eshleman

We report a freely available software program, Pyromaker, which generates simulated traces for pyrosequencing results based on user inputs. Simulated pyrograms can aid in the analysis of complex pyrosequencing results in which various hypothesized mutations can be tested, and the resultant pyrograms can be matched with the actual pyrogram. We validated the software using the actual pyrograms for common KRAS gene mutations as well as several mutations in the BRAF, GNAS, and p53 genes. We demonstrate that all 18 possible single-base mutations within codons 12 and 13 of KRAS generate unique pyrosequencing traces and highlight the distinctions between them. We further show that all reported codon 12 and 13 complex mutations produce unique pyrograms. However, some complex mutations are indistinguishable from single-base mutations. For complicated pyrograms, Pyromaker was used in two modes, one in which hypothesis-based simulated pyrograms were pattern-matched with the actual pyrograms. In a second strategy with only the pyrogram, Pyromaker was used to identify the underlying mutation by iteratively reconstructing the mutant pyrogram. Either strategy was able to successfully identify the complex mutations, which were confirmed by cloning and sequencing. Using two examples of KRAS codon 12 mutations (specifically GGT→TTT, G12F and GGT→GAG, G12E), we report which combinations of five approaches permit unambiguous mutation identification. The most efficient approach was found to be pyrosequencing with Pyromaker.


The American Journal of Surgical Pathology | 2011

Diandric Triploid Hydatidiform Mole With Loss of Maternal Chromosome 11

Cheryl DeScipio; Lisa Haley; Katie Beierl; Ashwini P. Pandit; Kathleen M. Murphy; Brigitte M. Ronnett

Distinction of hydatidiform moles (HM) from nonmolar specimens and their subclassification as complete (CHM) versus partial hydatidiform mole (PHM) are important for clinical practice and investigational studies to refine ascertainment of risk of persistent gestational trophoblastic disease (GTD), which differs among these entities. Immunohistochemical analysis of p57 expression, a paternally imprinted maternally expressed gene on 11p15.5, and molecular genotyping are useful for improving diagnosis. CHMs are characterized by androgenetic diploidy, with loss of p57 expression due to lack of maternal DNA. Loss of p57 expression distinguishes CHMs from both PHMs (diandric triploidy) and nonmolar specimens (biparental diploidy), which retain expression. We report a unique HM characterized by morphologic features suggesting an early CHM, including lack of p57 expression by immunohistochemistry, but with genetic features more in keeping with a PHM. Specifically, molecular genotyping by short tandem repeat markers provided evidence to support interpretation as a PHM by demonstrating allele patterns and ratios most consistent with diandric triploidy, with evidence of loss of the maternal copy of chromosome 11 to explain the lack of p57 expression. This case illustrates the value of combined traditional pathologic and ancillary molecular techniques for refined diagnosis of molar specimens. It also raises questions regarding which modalities should be used to ultimately define the subtypes of HMs and whether chromosomal losses or gains, particularly involving imprinted genes such as p57, might play a role in modifying risk of persistent GTD.


The Journal of Molecular Diagnostics | 2014

Haplotype counting by next-generation sequencing for ultrasensitive human DNA detection.

Marija Debeljak; Donald Freed; Jane Welch; Lisa Haley; Katie Beierl; Brian S. Iglehart; Aparna Pallavajjala; Christopher D. Gocke; Mary S. Leffell; Ming Tseh Lin; Jonathan Pevsner; Sarah J. Wheelan; James R. Eshleman

Human identity testing is critical to the fields of forensics, paternity, and hematopoietic stem cell transplantation. Most bone marrow (BM) engraftment testing currently uses microsatellites or short tandem repeats that are resolved by capillary electrophoresis. Single-nucleotide polymorphisms (SNPs) are theoretically a better choice among polymorphic DNA; however, ultrasensitive detection of SNPs using next-generation sequencing is currently not possible because of its inherently high error rate. We circumvent this problem by analyzing blocks of closely spaced SNPs, or haplotypes. As proof-of-principle, we chose the HLA-A locus because it is highly polymorphic and is already genotyped to select proper donors for BM transplant recipients. We aligned common HLA-A alleles and identified a region containing 18 closely spaced SNPs, flanked by nonpolymorphic DNA for primer placement. Analysis of cell line mixtures shows that the assay is accurate and precise, and has a lower limit of detection of approximately 0.01%. The BM from a series of hematopoietic stem cell transplantation patients who tested as all donor by short tandem repeat analysis demonstrated 0% to 1.5% patient DNA. Comprehensive analysis of the human genome using the 1000 Genomes database identified many additional loci that could be used for this purpose. This assay may prove useful to identify hematopoietic stem cell transplantation patients destined to relapse, microchimerism associated with solid organ transplantation, forensic applications, and possibly patient identification.


International Journal of Gynecological Pathology | 2012

Tetraploid partial hydatidiform mole: a case report and review of the literature.

Kathleen M. Murphy; Cheryl DeScipio; Jennifer Wagenfuehr; Sharon Tandy; Johanna Mabray; Katie Beierl; Kara Micetich; Arlene L. Libby; Brigitte M. Ronnett

Distinction of hydatidiform moles from nonmolar specimens and their subclassification as complete (complete hydatidiform mole) versus partial hydatidiform mole (PHM) are important for clinical practice and investigational studies to refine ascertainment of risk of persistent gestational trophoblastic disease, which differs among these entities. Immunohistochemical analysis of p57 expression, a paternally imprinted maternally expressed gene on 11p15.5, and molecular genotyping are useful for improving diagnosis. Here, we describe a first trimester abortus with morphologic features consistent with a hydatidiform mole and p57 expression pattern supporting a diagnosis of PHM. Short tandem repeat (STR) genotyping and fluorescent in-situ hybridization analysis showed tetraploidy with 3 paternal and 1 maternal chromosome complements. To our knowledge, this is the first description of a tetraploid PHM confirmed to be triandric by STR analysis, and the first description of p57 immunostaining in a confirmed triandric tetraploid PHM. This case highlights the complex nature of the genetics that can be encountered in molar specimens and illustrates that STR genotyping, in contrast to fluorescent in-situ hybridization or ploidy analysis, offers the advantage of determining the parental origin of chromosome complements for refined diagnosis of hydatidiform moles.

Collaboration


Dive into the Katie Beierl's collaboration.

Top Co-Authors

Avatar

James R. Eshleman

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Christopher D. Gocke

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Ming Tseh Lin

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

Lisa Haley

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Li Hui Tseng

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

Cheryl DeScipio

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Marija Debeljak

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Sarah J. Wheelan

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Guoli Chen

Penn State Milton S. Hershey Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge