Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Katie J. Doores is active.

Publication


Featured researches published by Katie J. Doores.


Nature | 2011

Broad neutralization coverage of HIV by multiple highly potent antibodies

Laura M. Walker; Michael Huber; Katie J. Doores; Emilia Falkowska; Robert Pejchal; Jean-Philippe Julien; Sheng-Kai Wang; Alejandra Ramos; Po-Ying Chan-Hui; Matthew Moyle; Jennifer L. Mitcham; Phillip W. Hammond; Ole A. Olsen; Pham Phung; Steven P. Fling; Chi-Huey Wong; Sanjay Phogat; Terri Wrin; Melissa Simek; Protocol G. Principal Investigators; Wayne C. Koff; Ian A. Wilson; Dennis R. Burton; Pascal Poignard

Broadly neutralizing antibodies against highly variable viral pathogens are much sought after to treat or protect against global circulating viruses. Here we probed the neutralizing antibody repertoires of four human immunodeficiency virus (HIV)-infected donors with remarkably broad and potent neutralizing responses and rescued 17 new monoclonal antibodies that neutralize broadly across clades. Many of the new monoclonal antibodies are almost tenfold more potent than the recently described PG9, PG16 and VRC01 broadly neutralizing monoclonal antibodies and 100-fold more potent than the original prototype HIV broadly neutralizing monoclonal antibodies. The monoclonal antibodies largely recapitulate the neutralization breadth found in the corresponding donor serum and many recognize novel epitopes on envelope (Env) glycoprotein gp120, illuminating new targets for vaccine design. Analysis of neutralization by the full complement of anti-HIV broadly neutralizing monoclonal antibodies now available reveals that certain combinations of antibodies should offer markedly more favourable coverage of the enormous diversity of global circulating viruses than others and these combinations might be sought in active or passive immunization regimes. Overall, the isolation of multiple HIV broadly neutralizing monoclonal antibodies from several donors that, in aggregate, provide broad coverage at low concentrations is a highly positive indicator for the eventual design of an effective antibody-based HIV vaccine.


Science | 2011

A potent and broad neutralizing antibody recognizes and penetrates the HIV glycan shield.

Robert Pejchal; Katie J. Doores; Laura M. Walker; Reza Khayat; Po-Ssu Huang; Sheng-Kai Wang; Robyn L. Stanfield; Jean-Philippe Julien; Alejandra Ramos; Matthew Crispin; Rafael S. Depetris; Umesh Katpally; Andre J. Marozsan; Albert Cupo; Sebastien Maloveste; Yan Liu; Ryan McBride; Yukishige Ito; Rogier W. Sanders; Cassandra Ogohara; James C. Paulson; Ten Feizi; Christopher N. Scanlan; Chi-Huey Wong; John P. Moore; William C. Olson; Andrew B. Ward; Pascal Poignard; William R. Schief; Dennis R. Burton

An HIV antibody achieves potency and breadth by binding simultaneously to two conserved glycans on the viral envelope protein. The HIV envelope (Env) protein gp120 is protected from antibody recognition by a dense glycan shield. However, several of the recently identified PGT broadly neutralizing antibodies appear to interact directly with the HIV glycan coat. Crystal structures of antigen-binding fragments (Fabs) PGT 127 and 128 with Man9 at 1.65 and 1.29 angstrom resolution, respectively, and glycan binding data delineate a specific high mannose-binding site. Fab PGT 128 complexed with a fully glycosylated gp120 outer domain at 3.25 angstroms reveals that the antibody penetrates the glycan shield and recognizes two conserved glycans as well as a short β-strand segment of the gp120 V3 loop, accounting for its high binding affinity and broad specificify. Furthermore, our data suggest that the high neutralization potency of PGT 127 and 128 immunoglobulin Gs may be mediated by cross-linking Env trimers on the viral surface.


Nature Structural & Molecular Biology | 2013

Supersite of immune vulnerability on the glycosylated face of HIV-1 envelope glycoprotein gp120.

Leopold Kong; Jeong Hyun Lee; Katie J. Doores; Charles D. Murin; Jean-Philippe Julien; Ryan McBride; Yan Liu; Andre J. Marozsan; Albert Cupo; Per Johan Klasse; Simon Hoffenberg; Michael J. Caulfield; C. Richter King; Yuanzi Hua; Khoa Le; Reza Khayat; Marc C. Deller; Thomas Clayton; Henry Tien; Ten Feizi; Rogier W. Sanders; James C. Paulson; John P. Moore; Robyn L. Stanfield; Dennis R. Burton; Andrew B. Ward; Ian A. Wilson

A substantial proportion of the broadly neutralizing antibodies (bnAbs) identified in certain HIV-infected donors recognize glycan-dependent epitopes on HIV-1 gp120. Here we elucidate how the bnAb PGT 135 binds its Asn332 glycan–dependent epitope from its 3.1-Å crystal structure with gp120, CD4 and Fab 17b. PGT 135 interacts with glycans at Asn332, Asn392 and Asn386, using long CDR loops H1 and H3 to penetrate the glycan shield and access the gp120 protein surface. EM reveals that PGT 135 can accommodate the conformational and chemical diversity of gp120 glycans by altering its angle of engagement. Combined structural studies of PGT 135, PGT 128 and 2G12 show that this Asn332-dependent antigenic region is highly accessible and much more extensive than initially appreciated, which allows for multiple binding modes and varied angles of approach; thereby it represents a supersite of vulnerability for antibody neutralization.


Science Translational Medicine | 2014

Promiscuous Glycan Site Recognition by Antibodies to the High-Mannose Patch of gp120 Broadens Neutralization of HIV

Devin Sok; Katie J. Doores; Bryan Briney; Khoa Le; Karen L. Saye-Francisco; Alejandra Ramos; Daniel W. Kulp; Jean-Philippe Julien; Sergey Menis; Lalinda Wickramasinghe; Michael S. Seaman; William R. Schief; Ian A. Wilson; Pascal Poignard; Dennis R. Burton

HIV broadly neutralizing monoclonal antibodies targeting the high-mannose patch of Env can use alternate glycan sites for neutralization. Neutralizing Antibodies with a Sweet Tooth Sugar can be quite tempting—as anyone who’s seen a kid rip into birthday cake can attest. Yet, antibodies can also have a sweet tooth, targeting glycan modifications on the surface of proteins. Indeed, some antibodies that neutralize multiple HIV strains—broadly neutralizing monoclonal antibodies (bnmAbs)—target a high-mannose patch on the HIV protein Env. Although this high-mannose patch is centered around the glycan at position 332 (N332), it has remained unclear if the N332 glycan is absolutely required for neutralization and, if not, why not. Sok et al. found that these mannose patch–targeting antibodies can bind alternate glycans in the absence of N332, which helps to explain their ability to neutralize many strains of HIV. Specifically, some bnmAbs can bind to the N334 site when that replaces the N332 site and some can form more interactions with other glycans, particularly complex-type glycans on variable loops, if the N332 sugar is absent. These data also suggest that mannose patch–targeting bnmAbs can work in combination to neutralize a wider range of different strains than single bnmAbs. The promiscuity of glycan binding by these sugar-loving antibodies is important to consider for both vaccine and therapeutic antibody development. Broadly neutralizing monoclonal antibodies (bnmAbs) that target the high-mannose patch centered around the glycan at position 332 on HIV Env are promising vaccine leads and therapeutic candidates because they effectively protect against mucosal SHIV challenge and strongly suppress SHIV viremia in established infection in macaque models. However, these antibodies demonstrate varying degrees of dependency on the N332 glycan site, and the origins of their neutralization breadth are not always obvious. By measuring neutralization on an extended range of glycan site viral variants, we found that some bnmAbs can use alternate N-linked glycans in the absence of the N332 glycan site and therefore neutralize a substantial number of viruses lacking the site. Furthermore, many of the antibodies can neutralize viruses in which the N332 glycan site is shifted to the 334 position. Finally, we found that a combination of three antibody families that target the high-mannose patch can lead to 99% neutralization coverage of a large panel of viruses containing the N332/N334 glycan site and up to 66% coverage for viruses that lack the N332/N334 glycan site. The results indicate that a diverse response against the high-mannose patch may provide near-equivalent coverage as a combination of bnmAbs targeting multiple epitopes. Additionally, the ability of some bnmAbs to use other N-linked glycan sites can help counter neutralization escape mediated by shifting of glycosylation sites. Overall, this work highlights the importance of promiscuous glycan binding properties in bnmAbs to the high-mannose patch for optimal antiviral activity in either protective or therapeutic modalities.


Cell Reports | 2016

Composition and Antigenic Effects of Individual Glycan Sites of a Trimeric HIV-1 Envelope Glycoprotein

Anna Janina Behrens; Snezana Vasiljevic; Laura K. Pritchard; David J. Harvey; Rajinder S. Andev; Stefanie A. Krumm; Weston B. Struwe; Albert Cupo; Abhinav Kumar; Nicole Zitzmann; Gemma E. Seabright; Holger B. Kramer; Daniel Spencer; Louise Royle; Jeong Hyun Lee; P. J. Klasse; Dennis R. Burton; Ian A. Wilson; Andrew B. Ward; Rogier W. Sanders; John P. Moore; Katie J. Doores; Max Crispin

Summary The HIV-1 envelope glycoprotein trimer is covered by an array of N-linked glycans that shield it from immune surveillance. The high density of glycans on the trimer surface imposes steric constraints limiting the actions of glycan-processing enzymes, so that multiple under-processed structures remain on specific areas. These oligomannose glycans are recognized by broadly neutralizing antibodies (bNAbs) that are not thwarted by the glycan shield but, paradoxically, target it. Our site-specific glycosylation analysis of a soluble, recombinant trimer (BG505 SOSIP.664) maps the extremes of simplicity and diversity of glycan processing at individual sites and reveals a mosaic of dense clusters of oligomannose glycans on the outer domain. Although individual sites usually minimally affect the global integrity of the glycan shield, we identify examples of how deleting some glycans can subtly influence neutralization by bNAbs that bind at distant sites. The network of bNAb-targeted glycans should be preserved on vaccine antigens.


Journal of Virology | 2015

Two Classes of Broadly Neutralizing Antibodies within a Single Lineage Directed to the High-Mannose Patch of HIV Envelope

Katie J. Doores; Leopold Kong; Stefanie A. Krumm; Khoa Le; Devin Sok; Uri Laserson; Fernando Garces; Pascal Poignard; Ian A. Wilson; Dennis R. Burton

ABSTRACT The high-mannose patch of human immunodeficiency virus (HIV) envelope (Env) elicits broadly neutralizing antibodies (bnAbs) during natural infection relatively frequently, and consequently, this region has become a major target of vaccine design. However, it has also become clear that antibody recognition of the region is complex due, at least in part, to variability in neighboring loops and glycans critical to the epitopes. bnAbs against this region have some shared features and some distinguishing features that are crucial to understand in order to design optimal immunogens that can induce different classes of bnAbs against this region. Here, we compare two branches of a single antibody lineage, in which all members recognize the high-mannose patch. One branch (prototype bnAb PGT128) has a 6-amino-acid insertion in CDRH2 that is crucial for broad neutralization. Antibodies in this branch appear to favor a glycan site at N332 on gp120, and somatic hypermutation is required to accommodate the neighboring V1 loop glycans and glycan heterogeneity. The other branch (prototype bnAb PGT130) lacks the CDRH2 insertion. Antibodies in this branch are noticeably effective at neutralizing viruses with an alternate N334 glycan site but are less able to accommodate glycan heterogeneity. We identify a new somatic variant within this branch that is predominantly dependent on N334. The crystal structure of PGT130 offers insight into differences from PGT128. We conclude that different immunogens may be required to elicit bnAbs that have the optimal characteristics of the two branches of the lineage described. IMPORTANCE Development of an HIV vaccine is of vital importance for prevention of new infections, and it is thought that elicitation of HIV bnAbs will be an important component of an effective vaccine. Increasingly, bnAbs that bind to the cluster of high-mannose glycans on the HIV envelope glycoprotein, gp120, are being highlighted as important templates for vaccine design. In particular, bnAbs from IAVI donor 36 (PGT125 to PGT131) have been shown to be extremely broad and potent. Combination of these bnAbs enhanced neutralization breadth considerably, suggesting that an optimal immunogen should elicit several antibodies from this family. Here we study the evolution of this antibody family to inform immunogen design. We identify two classes of bnAbs that differ in their recognition of the high-mannose patch and show that different immunogens may be required to elicit these different classes.


Nature Communications | 2015

Glycan clustering stabilizes the mannose patch of HIV-1 and preserves vulnerability to broadly neutralizing antibodies

Laura K. Pritchard; Daniel Spencer; Louise Royle; Camille Bonomelli; Gemma E. Seabright; Anna-Janina Behrens; Daniel W. Kulp; Sergey Menis; Stefanie A. Krumm; Dc Dunlop; Dj Crispin; Thomas A. Bowden; Christopher N. Scanlan; Andrew B. Ward; William R. Schief; Katie J. Doores; Max Crispin

The envelope spike of HIV-1 employs a ‘glycan shield’ to protect itself from antibody-mediated neutralization. Paradoxically, however, potent broadly neutralizing antibodies (bnAbs) have been isolated which target this shield. The unusually high glycan density on the gp120 subunit limits processing during biosynthesis, leaving a region of under-processed oligomannose-type structures which is a primary target of these bnAbs. Here we investigate the contribution of individual glycosylation sites to formation of this so-called intrinsic mannose patch. Deletion of individual sites has a limited effect on the overall size of the intrinsic mannose patch but leads to changes in the processing of neighboring glycans. These structural changes are largely tolerated by a panel of glycan-dependent bnAbs targeting these regions, indicating a degree of plasticity in their recognition. These results support the intrinsic mannose patch as a stable target for vaccine design.


Journal of Virology | 2015

Cell- and Protein-Directed Glycosylation of Native Cleaved HIV-1 Envelope.

Laura K. Pritchard; David J. Harvey; Camille Bonomelli; Max Crispin; Katie J. Doores

ABSTRACT The gp120/gp41 HIV-1 envelope glycoprotein (Env) is highly glycosylated, with up to 50% of its mass consisting of N-linked glycans. This dense carbohydrate coat has emerged as a promising vaccine target, with its glycans acting as epitopes for a number of potent and broadly neutralizing antibodies (bnAbs). Characterizing the glycan structures present on native HIV-1 Env is thus a critical goal for the design of Env immunogens. In this study, we used a complementary, multistep approach involving ion mobility mass spectrometry and high-performance liquid chromatography to comprehensively characterize the glycan structures present on HIV-1 gp120 produced in peripheral blood mononuclear cells (PBMCs). The capacity of different expression systems, including pseudoviral particles and recombinant cell surface trimers, to reproduce native-like glycosylation was then assessed. A population of oligomannose glycans on gp120 was reproduced across all expression systems, supporting this as an intrinsic property of Env that can be targeted for vaccine design. In contrast, Env produced in HEK 293T cells failed to accurately reproduce the highly processed complex-type glycan structures observed on PBMC-derived gp120, and in particular the precise linkage of sialic acid residues that cap these glycans. Finally, we show that unlike for gp120, the glycans decorating gp41 are mostly complex-type sugars, consistent with the glycan specificity of bnAbs that target this region. These findings provide insights into the glycosylation of native and recombinant HIV-1 Env and can be used to inform strategies for immunogen design and preparation. IMPORTANCE Development of an HIV vaccine is desperately needed to control new infections, and elicitation of HIV bnAbs will likely be an important component of an effective vaccine. Increasingly, HIV bnAbs are being identified that bind to the N-linked glycans coating the HIV envelope glycoproteins gp120 and gp41, highlighting them as important targets for vaccine design. It is therefore important to characterize the glycan structures present on native, virion-associated gp120 and gp41 for development of vaccines that accurately mimic native-Env glycosylation. In this study, we used a number of analytical techniques to precisely study the structures of both the oligomannose and complex-type glycans present on native Env to provide a reference for determining the ability of potential HIV immunogens to accurately replicate the glycosylation pattern on these native structures.


FEBS Journal | 2015

The HIV glycan shield as a target for broadly neutralizing antibodies

Katie J. Doores

The HIV envelope glycoprotein (Env) is the sole target for HIV broadly neutralizing antibodies (bnAbs). HIV Env is one of the most heavily glycosylated proteins known, with approximately half of its mass consisting of host‐derived N‐linked glycans. The high density of glycans creates a shield that impedes antibody recognition but, critically, some of the most potent and broadly active bnAbs have evolved to recognize epitopes formed by these glycans. Although the virus hijacks the host protein synthesis and glycosylation machinery to generate glycosylated HIV Env, studies have shown that HIV Env glycosylation diverges from that typically observed on host‐derived glycoproteins. In particular, the high density of glycans leads to a nonself motif of underprocessed oligomannose‐type glycans that forms the target of some of the most broad and potent HIV bnAbs. This review discusses the changing perception of the HIV glycan shield, and summarizes the protein‐directed and cell‐directed factors controlling HIV Env glycosylation that impact on HIV bnAb recognition and HIV vaccine design strategies.


Journal of Virology | 2015

Glycan Microheterogeneity at the PGT135 Antibody Recognition Site on HIV-1 gp120 Reveals a Molecular Mechanism for Neutralization Resistance

Laura K. Pritchard; Daniel Spencer; Louise Royle; Snezana Vasiljevic; Stefanie A. Krumm; Katie J. Doores; Matthew Crispin

ABSTRACT Broadly neutralizing antibodies have been isolated that bind the glycan shield of the HIV-1 envelope spike. One such antibody, PGT135, contacts the intrinsic mannose patch of gp120 at the Asn332, Asn392, and Asn386 glycosylation sites. Here, site-specific glycosylation analysis of recombinant gp120 revealed glycan microheterogeneity sufficient to explain the existence of a minor population of virions resistant to PGT135 neutralization. Target microheterogeneity and antibody glycan specificity are therefore important parameters in HIV-1 vaccine design.

Collaboration


Dive into the Katie J. Doores's collaboration.

Top Co-Authors

Avatar

Dennis R. Burton

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Max Crispin

University of Southampton

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ian A. Wilson

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pascal Poignard

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Andrew B. Ward

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Khoa Le

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge