Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Katie M. Dugger is active.

Publication


Featured researches published by Katie M. Dugger.


Ecological Applications | 2010

Conserving migratory land birds in the New World: Do we know enough?

John Faaborg; Richard T. Holmes; Angela D. Anders; Keith L. Bildstein; Katie M. Dugger; Sidney A. Gauthreaux; Patricia J. Heglund; Keith A. Hobson; Alex E. Jahn; Douglas H. Johnson; Steven C. Latta; Douglas J. Levey; Peter P. Marra; Christopher L. Merkord; Erica Nol; Stephen I. Rothstein; Thomas W. Sherry; T. Scott Sillett; Frank R. Thompson; Nils Warnock

Migratory bird needs must be met during four phases of the year: breeding season, fall migration, wintering, and spring migration; thus, management may be needed during all four phases. The bulk of research and management has focused on the breeding season, although several issues remain unsettled, including the spatial extent of habitat influences on fitness and the importance of habitat on the breeding grounds used after breeding. Although detailed investigations have shed light on the ecology and population dynamics of a few avian species, knowledge is sketchy for most species. Replication of comprehensive studies is needed for multiple species across a range of areas, Information deficiencies are even greater during the wintering season, when birds require sites that provide security and food resources needed for survival and developing nutrient reserves for spring migration and, possibly, reproduction. Research is needed on many species simply to identify geographic distributions, wintering sites, habitat use, and basic ecology. Studies are complicated, however, by the mobility of birds and by sexual segregation during winter. Stable-isotope methodology has offered an opportunity to identify linkages between breeding and wintering sites, which facilitates understanding the complete annual cycle of birds. The twice-annual migrations are the poorest-understood events in a birds life. Migration has always been a risky undertaking, with such anthropogenic features as tall buildings, towers, and wind generators adding to the risk. Species such as woodland specialists migrating through eastern North America have numerous options for pausing during migration to replenish nutrients, but some species depend on limited stopover locations. Research needs for migration include identifying pathways and timetables of migration, quality and distribution of habitats, threats posed by towers and other tall structures, and any bottlenecks for migration. Issues such as human population growth, acid deposition, climate change, and exotic diseases are global concerns with uncertain consequences to migratory birds and even less-certain remedies. Despite enormous gaps in our understanding of these birds, research, much of it occurring in the past 30 years, has provided sufficient information to make intelligent conservation efforts but needs to expand to handle future challenges.


Journal of Wildlife Management | 2005

MODELING OF SITE OCCUPANCY DYNAMICS FOR NORTHERN SPOTTED OWLS, WITH EMPHASIS ON THE EFFECTS OF BARRED OWLS

Gail S. Olson; Robert G. Anthony; Eric D. Forsman; Steven H. Ackers; Peter J. Loschl; Janice A. Reid; Katie M. Dugger; Elizabeth M. Glenn; William J. Ripple

Abstract Northern spotted owls (Strix occidentalis caurina) have been studied intensively since their listing as a threatened species by the U.S. Fish and Wildlife Service in 1990. Studies of spotted owl site occupancy have used various binary response measures, but most of these studies have made the assumption that detectability is perfect, or at least high and not variable. Further, previous studies did not consider temporal variation in site occupancy. We used relatively new methods for open population modeling of site occupancy that incorporated imperfect and variable detectability of spotted owls and allowed modeling of temporal variation in site occupancy, extinction, and colonization probabilities. We also examined the effects of barred owl (S. varia) presence on these parameters. We used spotted owl survey data from 1990 to 2002 for 3 study areas in Oregon, USA, and we used program MARK to develop and analyze site occupancy models. We found per visit detection probabilities averaged <0.70 and were highly variable among study years and study areas. Site occupancy probabilities for owl pairs declined greatly on 1 study area and slightly on the other 2 areas. For all owls, including singles and pairs, site occupancy was mostly stable through time. Barred owl presence had a negative effect on spotted owl detection probabilities, and it had either a positive effect on local-extinction probabilities or a negative effect on colonization probabilities. We conclude that further analyses of spotted owls must account for imperfect and variable detectability and barred owl presence to properly interpret results. Further, because barred owl presence is increasing within the range of northern spotted owls, we expect to see further declines in the proportion of sites occupied by spotted owls.


Wildlife Monographs | 2006

STATUS AND TRENDS IN DEMOGRAPHY OF NORTHERN SPOTTED OWLS, 1985-2003

Robert G. Anthony; Eric D. Forsman; Alan B. Franklin; David R. Anderson; Kenneth P. Burnham; Gary C. White; Carl J. Schwarz; James D. Nichols; James E. Hines; Gail S. Olson; Steven H. Ackers; Lawrence S. Andrews; Brian L. Biswell; Peter C. Carlson; Lowell V. Diller; Katie M. Dugger; Katherine E. Fehring; Tracy L. Fleming; Richard P. Gerhardt; Scott Gremel; R. J. Gutiérrez; Patti J. Happe; Dale R. Herter; J. Mark Higley; Robert B. Horn; Larry L. Irwin; Peter J. Loschl; Janice A. Reid; Stan G. Sovern

Abstract We analyzed demographic data from northern spotted owls (Strix occidentalis caurina) from 14 study areas in Washington, Oregon, and California for 1985–2003. The purpose of our analyses was to provide an assessment of the status and trends of northern spotted owl populations throughout most of their geographic range. The 14 study areas made up approximately 12% of the range of the subspecies and included federal, tribal, private, and mixed federal and private lands. The study areas also included all the major forest types that the subspecies inhabits. The analyses followed rigorous protocols that were developed a priori and were the result of extensive discussions and consensus among the authors. Our primary objectives were to estimate fecundity, apparent survival (φ), and annual rate of population change (λ) and to determine if there were any temporal trends in these population parameters. In addition to analyses of data from individual study areas, we conducted 2 meta-analyses on each demographic parameter. One meta-analysis was conducted on all 14 areas, and the other was restricted to the 8 areas that constituted the Effectiveness Monitoring Plan for northern spotted owls under the Northwest Forest Plan. The average number of years of reproductive data per study area was 14 (range = 5–19), and the average number of recapture occasions per study area was 13 (range = 4–18). Only 1 study area had <12 years of data. Our results were based on 32,054 captures and resightings of 11,432 banded individuals for estimation of survival and 10,902 instances in which we documented the number of young produced by territorial females. The number of young fledged (NYF) per territorial female was analyzed by testing a suite of a priori models that included (1) effects of age, (2) linear or quadratic time trends, (3) presence of barred owls (Strix varia) in spotted owl territories, and (4) an even-odd year effect. The NYF varied among years on most study areas with a biennial cycle of high reproduction in even-numbered years and low reproduction in odd-numbered years. These cyclic fluctuations did not occur on all study areas, and the even–odd year effect waned during the last 5 years of the study. Fecundity was highest for adults (x̄ = 0.372, SE = 0.029), lower for 2-year-olds (x̄ = 0.208, SE = 0.032), and very low for 1-year-olds (x̄ = 0.074, SE = 0.029). Fecundity was stable over time for 6 areas (Rainier, Olympic, Warm Springs, H. J. Andrews, Klamath, and Marin), declining for 6 areas (Wenatchee, Cle Elum, Oregon Coast Range, Southern Oregon Cascades, Northwest California, and Simpson), and slightly increasing for 2 areas (Tyee, Hoopa). We found little association between NYF and the proportion of northern spotted owl territories where barred owls were detected, although results were suggestive of a negative effect of barred owls on the Wenatchee and Olympic study areas. The meta-analysis on fecundity indicated substantial annual variability with no increasing or decreasing trends. Fecundity was highest in the mixed-conifer region of eastern Washington (x̄ = 0.560, SE = 0.041) and lowest in the Douglas-fir (Pseudotsuga menziesii) region of the Oregon coast (x̄ = 0.306, SE = 0.039). We used Cormack–Jolly–Seber open population models and Program MARK to estimate apparent survival rates of owls >1 year old. We found no differences in apparent survival rates between sexes except for 1 area (Marin), which had only 6 years of data. Estimates of apparent survival from individual study areas indicated that there were differences among age classes with adults generally having higher survival than 1- and 2-year-olds. Apparent survival rates ranged from 0.750 (SE = 0.026) to 0.886 (SE = 0.010) for adults, 0.626 (SE = 0.073) to 0.886 (SE = 0.010) for 2-year-olds, and 0.415 (SE = 0.111) to 0.860 (SE = 0.017) for 1-year-olds. These estimates were comparable to survival rates from previous studies on the subspecies. We found evidence for negative time trends in survival rates on 5 study areas (Wenatchee, Cle Elum, Rainier, Olympic, and Northwest California) and no trends in survival on the remaining areas. There was evidence for negative effects of barred owls on apparent survival on 3 study areas (Wenatchee, Cle Elum, and Olympic). Survival rates of adult owls on the 8 Monitoring Areas generally were high, ranging from 0.85 (SE = 0.009) to 0.89 (SE = 0.010), but were declining on the Cle Elum, Olympic, and Northwestern California study areas. The meta-analysis of apparent survival indicated differences among regions and changes over time with a downward trend in the mixed-conifer and Douglas-fir regions of Washington. The meta-analysis of apparent survival also indicated that there was a negative association between fecundity and survival the following year, suggesting a cost of reproduction on survival. This effect was limited to the Douglas-fir and mixed-conifer regions of Washington and the Douglas-fir region of the Oregon Cascade Mountains. We used the reparameterized Jolly–Seber method (λRJS) to estimate annual rate of population change of territorial owls in the study areas. This estimate answers the question, Are these territorial owls being replaced in this geographically open population? Point estimates of λRJS were <1.0 for 12 of 13 study areas. The analyses provided strong evidence that populations on the Wenatchee, Cle Elum, Rainier, Olympic, Warm Springs, H. J. Andrews, Oregon Coast Ranges, and Simpson study areas were declining during the study. The mean λ̂RJS for the 13 study areas was 0.963 (SE = 0.009), suggesting that populations over all the areas were declining about 3.7% per year during the study. The mean λ̂RJS for the 8 monitoring areas for the Northwest Forest Plan was 0.976 (SE = 0.007) compared to a mean of 0.942 (SE = 0.016) for the other study areas, a 2.4-versus-5.8% decline per year. This suggested that owl populations on federal lands had higher demographic rates than elsewhere; thus, the Northwest Forest Plan appeared to have a positive effect on demography of northern spotted owls. Populations were doing poorest in Washington, where apparent survival rates and populations were declining on all 4 study areas. Our estimates of λRJS were generally lower than those reported in a previous analysis (λ̂RJS = 0.997, SE = 0.003) for many of the same areas at an earlier date. The possible causes of population declines include but are not limited to habitat loss from timber harvest and fires, competition with barred owls, and weather patterns.


The Condor | 2005

THE RELATIONSHIP BETWEEN HABITAT CHARACTERISTICS AND DEMOGRAPHIC PERFORMANCE OF NORTHERN SPOTTED OWLS IN SOUTHERN OREGON

Katie M. Dugger; Frank Wagner; Robert G. Anthony; Gail S. Olson

Abstract We used data from Northern Spotted Owl (Strix occidentalis caurina) territories to model the effects of habitat (particularly intermediate-aged forest stand types), climate, and nonhabitat covariates (i.e., age, sex) on owl reproductive rate and apparent survival in southwestern Oregon. Our best model for reproductive rate included an interaction between a cyclic, annual time trend and male breeding experience, with higher reproductive rates in even years compared to odd, particularly for males with previous breeding experience. Reproductive rate was also negatively related to the amount of winter precipitation and positively related to the proportion of old-growth forest near the owl territory center. Apparent survival was not associated with age, sex, climate or any of the intermediate-aged forest types, but was positively associated with the proportion of older forest near the territory center in a pseudothreshold pattern. The quadratic structure of the proportion of nonhabitat farther from the nest or primary roost site was also part of our best survival model. Survival decreased dramatically when the amount of nonhabitat exceeded ∼50%. Habitat fitness potential estimates (λ̂h) for 97 owl territories ranged from 0.29–1.09, with a mean of 0.86 ± 0.02. Owl territories with habitat fitness potentials <1.0 were generally characterized by <40%–50% old forest habitat near the territory center. Our results indicate that both apparent survival and reproductive rate are positively associated with older forest types close to the nest or primary roost site. We found no support for either a positive or negative direct effect of intermediate-aged forests on either survival or reproductive rate.


The Condor | 2004

UNDERSTANDING SURVIVAL AND ABUNDANCE OF OVERWINTERING WARBLERS: DOES RAINFALL MATTER?

Katie M. Dugger; John Faaborg; Wayne J. Arendt; Keith A. Hobson

Abstract We investigated relationships between warbler abundance and survival rates measured on a Puerto Rican wintering site and rainfall patterns measured on the wintering site and in regions where these warblers breed, as estimated using stable-isotope analysis (δD) of feathers collected from wintering birds. We banded birds using constant-effort mist netting from January 1989–2003 in the Gu´nica Forest of southwestern Puerto Rico. Black-and-white Warblers (Mniotilta varia), American Redstarts (Setophaga ruticilla), and Ovenbirds (Seiurus aurocapilla) dominated the Neotropical migrant capture totals each winter, with resulting sample sizes large enough to estimate survival rates. Estimates of capture probability from survival modeling allowed us to estimate abundance from mist-netting capture totals for Black-and-white Warblers and Ovenbirds. Stable-hydrogen isotopes showed that the three focal species came mostly from the eastern United States. Black-and-white Warbler abundance was related to rainfall total deviations from normal in Guánica Forest, and Ovenbird abundance was related to total annual rainfall in the United States. Survival models with rainfall covariates were weakly supported overall, but apparent survival of Black-and-white Warblers and American Redstarts was negatively related to rain during the first 6 months of the year at Guánica, and Ovenbird survival was related to rainfall during the spring in the southeastern U.S. Abundance and apparent survival exhibited similar, species-specific patterns of association with rainfall for Black-and-white Warblers and Ovenbirds. Winter rainfall was important to demographic parameters of Black-and-white Warblers, and breeding-season rain was important to Ovenbirds. Entendiendo los Patrones de Supervivencia y Abundancia de Parúlidos Residentes de Invierno: ¿Es Importante la Precipitación? Resumen. Investigamos las relaciones entre la abundancia y las tasas de supervivencia de parúlidos residentes de invierno en Puerto Rico y los patrones de precipitación de los sitios invernales y de las áreas de anidación, éstas últimas deducidas a partir del análisis de isótopos estables (δD) en plumas colectadas de las aves migratorias. Las aves fueron capturadas y anilladas utilizando redes de niebla en el Bosque de Guánica en el suroeste de Puerto Rico durante el mes de enero, desde 1989 hasta el 2003. Las especies de aves neotropicales con mayor número de capturas totales durante cada invierno fueron Mniotilta varia, Setophaga ruticilla y Seiurus aurocapilla, con un tamaño de muestra lo suficientemente grande como para estimar sus tasas de supervivencia. La estimación de las probabilidades de captura a partir de los modelos de supervivencia nos permitieron evaluar la abundancia utilizando datos de capturas totales para Mniotilta varia y Seiurus aurocapilla. Los isótopos de hidrógeno estable mostraron que las tres especies de aves focales provinieron principalmente de la región Este de Estados Unidos. La abundancia de Mniotilta varia estuvo relacionada a las variaciones totales de precipitación en el Bosque de Guánica y la abundancia de Seiurus aurocapilla estuvo relacionada a la precipitación anual total en los Estados Unidos. Los modelos de supervivencia con covariables de precipitación tuvieron muy poco respaldo. Sin embargo, la supervivencia aparente de Mniotilta varia y Setophaga ruticilla estuvo relacionada negativamente a la precipitación durante los primeros seis meses del año en Guánica y la supervivencia de Seiurus aurocapilla estuvo relacionada a la precipitación durante la estación de primavera en el sureste de Estados Unidos. La abundancia y la supervivencia aparente mostraron patrones de asociación similares y específicos para cada especie con la precipitación para Mniotilta varia y Seiurus aurocapilla. La precipitación de invierno fue un factor importante para determinar los patrones demográficos de Mniotilta varia y la precipitación durante la temporada de anidación también fue un factor significativo para Seiurus aurocapilla.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Survival differences and the effect of environmental instability on breeding dispersal in an Adélie penguin meta-population

Katie M. Dugger; David G. Ainley; Phil O’B. Lyver; Kerry J. Barton; Grant Ballard

High survival and breeding philopatry was previously confirmed for the Adélie penguin (Pygoscelis adeliae) during a period of stable environmental conditions. However, movements of breeding adults as a result of an unplanned natural experiment within a four-colony meta-population provided interesting insights into this species’ population dynamics. We used multistate mark-recapture models to investigate apparent survival and dispersal of breeding birds in the southwestern Ross Sea during 12 breeding seasons (1996–2007). The natural experiment was facilitated by the temporary grounding of two immense icebergs that (i) erected a veritable fence separating colonies and altering migration routes and (ii) added additional stress by trapping extensive sea ice in the region during 5 of 12 y. Colony size varied by orders of magnitude, allowing investigation of apparent survival and dispersal rates in relation to both environmental conditions and colony size within this meta-population. Apparent survival was lowest for the smallest colony (4,000 pairs) and similar for the medium (45,000 pairs) and large colonies (155,000 pairs), despite increased foraging effort expended by breeders at the largest colony. Dispersal of breeding birds was low (<1%), except during years of difficult environmental conditions when movements increased, especially away from the smallest colony (3.5%). Decreased apparent survival at the smallest colony could reflect differences in migration chronology and winter habitat use compared with the other colonies, or it may reflect increased permanent emigration to colonies outside this meta-population. Contrary to current thought, breeding penguins are not always philopatric. Rather, stressful conditions can significantly increase dispersal rates.


PLOS ONE | 2013

Climate Change Winners: Receding Ice Fields Facilitate Colony Expansion and Altered Dynamics in an Adélie Penguin Metapopulation

Michelle A. LaRue; David G. Ainley; Matt Swanson; Katie M. Dugger; Phil O’B. Lyver; Kerry J. Barton; Grant Ballard

There will be winners and losers as climate change alters the habitats of polar organisms. For an Adélie penguin (Pygoscelis adeliae) colony on Beaufort Island (Beaufort), part of a cluster of colonies in the southern Ross Sea, we report a recent population increase in response to increased nesting habitat as glaciers have receded. Emigration rates of birds banded as chicks on Beaufort to colonies on nearby Ross Island decreased after 2005 as available habitat on Beaufort increased, leading to altered dynamics of the metapopulation. Using aerial photography beginning in 1958 and modern satellite imagery, we measured change in area of available nesting habitat and population size of the Beaufort colony. Population size varied with available habitat, and both increased rapidly since the 1990s. In accord with glacial retreat, summer temperatures at nearby McMurdo Station increased by ∼0.50°C per decade since the mid-1980s. Although the Ross Sea is likely to be the last ocean with an intact ecosystem, the recent retreat of ice fields at Beaufort that resulted in increased breeding habitat exemplifies a process that has been underway in the Ross Sea during the entire Holocene. Furthermore, our results are in line with predictions that major ice shelves and glaciers will retreat rapidly elsewhere in the Antarctic, potentially leading to increased breeding habitat for Adélie penguins. Results further indicated that satellite imagery may be used to estimate large changes in Adélie penguin populations, facilitating our understanding of metapopulation dynamics and environmental factors that influence regional populations.


Frontiers in Ecology and Evolution | 2014

Adélie penguins coping with environmental change: results from a natural experiment at the edge of their breeding range

Katie M. Dugger; Grant Ballard; David G. Ainley; Phil O’B. Lyver; Casey Schine

We investigated life history responses to extreme variation in physical environmental conditions during a long-term demographic study of Adelie penguins at 3 colonies representing 9% of the world population and the full range of breeding colony sizes. Five years into the 14-year study (1997-2010) two very large icebergs (spanning 1.5 latitude degrees in length) grounded in waters adjacent to breeding colonies, dramatically altering environmental conditions during 2001 - 2005. This natural experiment allowed us to evaluate the relative impacts of expected long-term, but also extreme, short-term climate perturbations on important natural history parameters that can regulate populations. The icebergs presented physical barriers, not just to the penguins but to polynya formation, which profoundly increased foraging effort and movement rates, while reducing breeding propensity and productivity, especially at the smallest colony. We evaluated the effect of a variety of environmental parameters during breeding, molt, migration and wintering periods during years with and without icebergs on penguin breeding productivity, chick mass, and nesting chronology. The icebergs had far more influence on the natural history parameters of penguins than any of the other environmental variables measured, resulting in population level changes to metrics of reproductive performance, including delays in nesting chronology, depressed breeding productivity, and lower chick mass. These effects were strongest at the smallest, southern-most colony, which was most affected by alteration of the Ross Sea Polynya during years the iceberg was present. Additionally, chick mass was negatively correlated with colony size, supporting previous findings indicating density-dependent energetic constraints at the largest colony. Understanding the negative effects of the icebergs on the short-term natural history of Adelie penguins, as well as their response to long-term environmental variation, are important


Virus Evolution | 2017

Unique genome organization of non-mammalian papillomaviruses provides insights into the evolution of viral early proteins

Koenraad Van Doorslaer; Valeria Ruoppolo; Annie Schmidt; Amélie Lescroël; Dennis Jongsomjit; Megan Elrod; Simona Kraberger; Daisy Stainton; Katie M. Dugger; Grant Ballard; David G. Ainley; Arvind Varsani

Abstract The family Papillomaviridae contains more than 320 papillomavirus types, with most having been identified as infecting skin and mucosal epithelium in mammalian hosts. To date, only nine non-mammalian papillomaviruses have been described from birds (n = 5), a fish (n = 1), a snake (n = 1), and turtles (n = 2). The identification of papillomaviruses in sauropsids and a sparid fish suggests that early ancestors of papillomaviruses were already infecting the earliest Euteleostomi. The Euteleostomi clade includes more than 90 per cent of the living vertebrate species, and progeny virus could have been passed on to all members of this clade, inhabiting virtually every habitat on the planet. As part of this study, we isolated a novel papillomavirus from a 16-year-old female Adélie penguin (Pygoscelis adeliae) from Cape Crozier, Ross Island (Antarctica). The new papillomavirus shares ∼64 per cent genome-wide identity to a previously described Adélie penguin papillomavirus. Phylogenetic analyses show that the non-mammalian viruses (expect the python, Morelia spilota, associated papillomavirus) cluster near the base of the papillomavirus evolutionary tree. A papillomavirus isolated from an avian host (Northern fulmar; Fulmarus glacialis), like the two turtle papillomaviruses, lacks a putative E9 protein that is found in all other avian papillomaviruses. Furthermore, the Northern fulmar papillomavirus has an E7 more similar to the mammalian viruses than the other avian papillomaviruses. Typical E6 proteins of mammalian papillomaviruses have two Zinc finger motifs, whereas the sauropsid papillomaviruses only have one such motif. Furthermore, this motif is absent in the fish papillomavirus. Thus, it is highly likely that the most recent common ancestor of the mammalian and sauropsid papillomaviruses had a single motif E6. It appears that a motif duplication resulted in mammalian papillomaviruses having a double Zinc finger motif in E6. We estimated the divergence time between Northern fulmar-associated papillomavirus and the other Sauropsid papillomaviruses be to around 250 million years ago, during the Paleozoic-Mesozoic transition and our analysis dates the root of the papillomavirus tree between 400 and 600 million years ago. Our analysis shows evidence for niche adaptation and that these non-mammalian viruses have highly divergent E6 and E7 proteins, providing insights into the evolution of the early viral (onco-)proteins.


The Wilson Journal of Ornithology | 2007

ARTHROPOD PREY OF WILSON'S WARBLERS IN THE UNDERSTORY OF DOUGLAS-FIR FORESTS

Joan C. Hagar; Katie M. Dugger; Edward E. Starkey

Abstract Availability of food resources is an important factor in avian habitat selection. Food resources for terrestrial birds often are closely related to vegetation structure and composition. Identification of plant species important in supporting food resources may facilitate vegetation management to achieve objectives for providing bird habitat. We used fecal analysis to describe the diet of adult Wilsons Warblers (Wilsonia pusilla) that foraged in the understory of Douglas-fir (Pseudotsuga menziesii) forests in western Oregon during the breeding season. We sampled arthropods at the same sites where diet data were collected, and compared abundance and biomass of prey among seven common shrub species. Wilsons Warblers ate more caterpillars (Lepidoptera larvae), flies (Diptera), beetles (Coleoptera), and Homoptera than expected based on availability. Deciduous shrubs supported higher abundances of arthropod taxa and size classes used as prey by Wilsons Warblers than did evergreen shrubs. The development and maintenance of deciduous understory vegetation in conifer forests of the Pacific Northwest may be fundamental for conservation of food webs that support breeding Wilsons Warblers and other shrub-associated, insectivorous songbirds.

Collaboration


Dive into the Katie M. Dugger's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert G. Anthony

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eric D. Forsman

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Wayne J. Arendt

United States Forest Service

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amélie Lescroël

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge