Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Katie M. Morzinski is active.

Publication


Featured researches published by Katie M. Morzinski.


Proceedings of the National Academy of Sciences of the United States of America | 2014

First light of the Gemini Planet Imager

Bruce A. Macintosh; James R. Graham; Patrick Ingraham; Quinn Konopacky; Christian Marois; Marshall D. Perrin; Lisa A. Poyneer; Brian J. Bauman; Travis Barman; Adam Burrows; Andrew Cardwell; Jeffrey K. Chilcote; Robert J. De Rosa; Daren Dillon; René Doyon; Jennifer Dunn; Darren Erikson; Michael P. Fitzgerald; Donald Gavel; Stephen J. Goodsell; Markus Hartung; Pascale Hibon; Paul Kalas; James E. Larkin; Jérôme Maire; Franck Marchis; Mark S. Marley; James McBride; Max Millar-Blanchaer; Katie M. Morzinski

Bruce Macintosh a , James R. Graham , Patrick Ingraham b , Quinn Konopacky , Christian Marois , Marshall Perrin f , Lisa Poyneer a , Brian Bauman a , Travis Barman , Adam Burrows , Andrew Cardwell , Jeffrey Chilcote j , Robert J. De Rosa , Daren Dillon , Rene Doyon , Jennifer Dunn e , Darren Erikson e , Michael Fitzgerald j , Donald Gavel l , Stephen Goodsell i , Markus Hartung i , Pascale Hibon i , Paul G. Kalas c , James Larkin j , Jerome Maire d , Franck Marchis , Mark Marley , James McBride c , Max Millar-Blanchaer d , Katie Morzinski , Andew Norton l B. R. Oppenheimer , Dave Palmer a , Jennifer Patience k , Laurent Pueyo f , Fredrik Rantakyro i , Naru Sadakuni i , Leslie Saddlemyer e , Dmitry Savransky , Andrew Serio i , Remi Soummer f Anand Sivaramakrishnan f , q Inseok Song , Sandrine Thomas , J. Kent Wallace , Sloane Wiktorowicz l , and Schuyler Wolff vSignificance Direct detection—spatially resolving the light of a planet from the light of its parent star—is an important technique for characterizing exoplanets. It allows observations of giant exoplanets in locations like those in our solar system, inaccessible by other methods. The Gemini Planet Imager (GPI) is a new instrument for the Gemini South telescope. Designed and optimized only for high-contrast imaging, it incorporates advanced adaptive optics, diffraction control, a near-infrared spectrograph, and an imaging polarimeter. During first-light scientific observations in November 2013, GPI achieved contrast performance that is an order of magnitude better than conventional adaptive optics imagers. The Gemini Planet Imager is a dedicated facility for directly imaging and spectroscopically characterizing extrasolar planets. It combines a very high-order adaptive optics system, a diffraction-suppressing coronagraph, and an integral field spectrograph with low spectral resolution but high spatial resolution. Every aspect of the Gemini Planet Imager has been tuned for maximum sensitivity to faint planets near bright stars. During first-light observations, we achieved an estimated H band Strehl ratio of 0.89 and a 5-σ contrast of 106 at 0.75 arcseconds and 105 at 0.35 arcseconds. Observations of Beta Pictoris clearly detect the planet, Beta Pictoris b, in a single 60-s exposure with minimal postprocessing. Beta Pictoris b is observed at a separation of 434 ± 6 milliarcseconds (mas) and position angle 211.8 ± 0.5°. Fitting the Keplerian orbit of Beta Pic b using the new position together with previous astrometry gives a factor of 3 improvement in most parameters over previous solutions. The planet orbits at a semimajor axis of 9.0−0.4+0.8 AU near the 3:2 resonance with the previously known 6-AU asteroidal belt and is aligned with the inner warped disk. The observations give a 4% probability of a transit of the planet in late 2017.


Science | 2015

Discovery and spectroscopy of the young jovian planet 51 Eri b with the Gemini Planet Imager

Bruce A. Macintosh; James R. Graham; Travis Barman; R. J. De Rosa; Quinn Konopacky; Mark S. Marley; Christian Marois; Eric L. Nielsen; Laurent Pueyo; Abhijith Rajan; Julien Rameau; Didier Saumon; Jason J. Wang; Jenny Patience; Mark Ammons; Pauline Arriaga; Étienne Artigau; Steven V. W. Beckwith; J. Brewster; Sebastian Bruzzone; Joanna Bulger; B. Burningham; Adam Burrows; C. H. Chen; Eugene Chiang; Jeffrey K. Chilcote; Rebekah I. Dawson; Ruobing Dong; René Doyon; Zachary H. Draper

An exoplanet extracted from the bright Direct imaging of Jupiter-like exoplanets around young stars provides a glimpse into how our solar system formed. The brightness of young stars requires the use of next-generation devices such as the Gemini Planet Imager (GPI). Using the GPI, Macintosh et al. discovered a Jupiter-like planet orbiting a young star, 51 Eridani (see the Perspective by Mawet). The planet, 51 Eri b, has a methane signature and is probably the smallest exoplanet that has been directly imaged. These findings open the door to understanding solar system origins and herald the dawn of a new era in next-generation planetary imaging. Science, this issue p. 64; see also p. 39 The Gemini Planet Imager detects a Jupiter-like exoplanet orbiting the young star 51 Eridani. [Also see Perspective by Mawet] Directly detecting thermal emission from young extrasolar planets allows measurement of their atmospheric compositions and luminosities, which are influenced by their formation mechanisms. Using the Gemini Planet Imager, we discovered a planet orbiting the ~20-million-year-old star 51 Eridani at a projected separation of 13 astronomical units. Near-infrared observations show a spectrum with strong methane and water-vapor absorption. Modeling of the spectra and photometry yields a luminosity (normalized by the luminosity of the Sun) of 1.6 to 4.0 × 10−6 and an effective temperature of 600 to 750 kelvin. For this age and luminosity, “hot-start” formation models indicate a mass twice that of Jupiter. This planet also has a sufficiently low luminosity to be consistent with the “cold-start” core-accretion process that may have formed Jupiter.


Nature | 2015

Accreting protoplanets in the LkCa 15 transition disk

Stephanie Sallum; Katherine B. Follette; J. A. Eisner; Laird M. Close; P. Hinz; Kaitlin M. Kratter; Jared R. Males; A. Skemer; Bruce A. Macintosh; Peter G. Tuthill; Vanessa P. Bailey; Denis Defrere; Katie M. Morzinski; Timothy J. Rodigas; Eckhart Spalding; A. Vaz; Alycia J. Weinberger

Exoplanet detections have revolutionized astronomy, offering new insights into solar system architecture and planet demographics. While nearly 1,900 exoplanets have now been discovered and confirmed, none are still in the process of formation. Transition disks, protoplanetary disks with inner clearings best explained by the influence of accreting planets, are natural laboratories for the study of planet formation. Some transition disks show evidence for the presence of young planets in the form of disk asymmetries or infrared sources detected within their clearings, as in the case of LkCa 15 (refs 8, 9). Attempts to observe directly signatures of accretion onto protoplanets have hitherto proven unsuccessful. Here we report adaptive optics observations of LkCa 15 that probe within the disk clearing. With accurate source positions over multiple epochs spanning 2009–2015, we infer the presence of multiple companions on Keplerian orbits. We directly detect Hα emission from the innermost companion, LkCa 15 b, evincing hot (about 10,000 kelvin) gas falling deep into the potential well of an accreting protoplanet.


Proceedings of SPIE | 2006

The Gemini Planet Imager

Bruce A. Macintosh; James R. Graham; David Palmer; René Doyon; Donald Gavel; James E. Larkin; Ben R. Oppenheimer; Leslie Saddlemyer; J. Kent Wallace; Brian J. Bauman; Julia W. Evans; Darren Erikson; Katie M. Morzinski; D. W. Phillion; Lisa A. Poyneer; Anand Sivaramakrishnan; Rémi Soummer; Simon Thibault; Jean-Pierre Véran

The next major frontier in the study of extrasolar planets is direct imaging detection of the planets themselves. With high-order adaptive optics, careful system design, and advanced coronagraphy, it is possible for an AO system on a 8-m class telescope to achieve contrast levels of 10-7 to 10-8, sufficient to detect warm self-luminous Jovian planets in the solar neighborhood. Such direct detection is sensitive to planets inaccessible to current radial-velocity surveys and allows spectral characterization of the planets, shedding light on planet formation and the structure of other solar systems. We have begun the construction of such a system for the Gemini Observatory. Dubbed the Gemini Planet Imager (GPI), this instrument should be deployed in 2010 on the Gemini South telescope. It combines a 2000-actuator MEMS-based AO system, an apodized-pupil Lyot coronagraph, a precision infrared interferometer for real-time wavefront calibration at the nanometer level, and a infrared integral field spectrograph for detection and characterization of the target planets. GPI will be able to achieve Strehl ratios > 0.9 at 1.65 microns and to observe a broad sample of science targets with I band magnitudes less than 8. In addition to planet detection, GPI will also be capable of polarimetric imaging of circumstellar dust disks, studies of evolved stars, and high-Strehl imaging spectroscopy of bright targets. We present here an overview of the GPI instrument design, an error budget highlighting key technological challenges, and models of the system performance.


The Astrophysical Journal | 2015

β PICTORIS' INNER DISK in POLARIZED LIGHT and NEW ORBITAL PARAMETERS for β PICTORIS b

Maxwell A. Millar-Blanchaer; James R. Graham; Laurent Pueyo; Paul Kalas; Rebekah I. Dawson; Jason J. Wang; Marshall D. Perrin; Dae Sik Moon; Bruce A. Macintosh; S. Mark Ammons; Travis Barman; Andrew Cardwell; C. H. Chen; Eugene Chiang; Jeffrey K. Chilcote; Tara Cotten; Robert J. De Rosa; Zachary H. Draper; Jennifer Dunn; Gaspard Duchene; Thomas M. Esposito; Michael P. Fitzgerald; Katherine B. Follette; Stephen J. Goodsell; Alexandra Z. Greenbaum; Markus Hartung; Pascale Hibon; Sasha Hinkley; Patrick Ingraham; Rebecca Jensen-Clem

© 2015. The American Astronomical Society. All rights reserved. We present H-band observations of β Pic with the Gemini Planet Imagers (GPIs) polarimetry mode that reveal the debris disk between ∼0.″3 (6 AU) and ∼1.″7 (33 AU), while simultaneously detecting β Pic b. The polarized disk image was fit with a dust density model combined with a Henyey-Greenstein scattering phase function. The best-fit model indicates a disk inclined to the line of sight () with a position angle (PA) (slightly offset from the main outer disk, ), that extends from an inner disk radius of to well outside GPIs field of view. In addition, we present an updated orbit for β Pic b based on new astrometric measurements taken in GPIs spectroscopic mode spanning 14 months. The planet has a semimajor axis of , with an eccentricity The PA of the ascending node is offset from both the outer main disk and the inner disk seen in the GPI image. The orbital fit constrains the stellar mass of β Pic to Dynamical sculpting by β Pic b cannot easily account for the following three aspects of the inferred disk properties: (1) the modeled inner radius of the disk is farther out than expected if caused by β Pic b; (2) the mutual inclination of the inner disk and β Pic b is when it is expected to be closer to zero; and (3) the aspect ratio of the disk () is larger than expected from interactions with β Pic b or self-stirring by the disks parent bodies.


The Astrophysical Journal | 2015

MAGELLAN ADAPTIVE OPTICS FIRST-LIGHT OBSERVATIONS of the EXOPLANET β PIC b. II. 3-5 μm DIRECT IMAGING with MagAO+Clio, and the EMPIRICAL BOLOMETRIC LUMINOSITY of A SELF-LUMINOUS GIANT PLANET

Katie M. Morzinski; Jared R. Males; A. Skemer; Laird M. Close; Phil Hinz; Timothy J. Rodigas; Alfio Puglisi; Simone Esposito; Armando Riccardi; Enrico Pinna; Marco Xompero; Runa Briguglio; Vanessa P. Bailey; Katherine B. Follette; Derek Kopon; Alycia J. Weinberger; Ya Lin Wu

We thank the Magellan and Las Campanas Observatory staff for making this well-engineered, smoothly operated telescope and site possible. We would especially like to thank Povilas Palunas for help over the entire MagAO commissioning run. Juan Gallardo, Patricio Jones, Emilio Cerda, Felipe Sanchez, Gabriel Martin, Maurico Navarrete, Jorge Bravo, Victor Merino, Patricio Pinto, Gabriel Prieto, Mauricio Martinez, Alberto Pasten, Jorge Araya, Hugo Rivera, and the whole team of technical experts helped perform many exacting tasks in a very professional manner. Glenn Eychaner, David Osip, and Frank Perez all gave expert support which was fantastic. The entire logistics, dining, housekeeping, and hospitality staff provide for an excellent, healthy environment that ensured the wellness of our team throughout the commissioning runs. It is a privilege to be able to commission an AO system with such a fine staff and site. The MagAO system was developed with support from the NSF, MRI and TSIP programs. The VisAO camera was developed with help from the NSF ATI program. K.M.M. and J.R.M. were supported under contract with the California Institute of Technology, funded by NASA through the Sagan Fellowship Program. J.R.M. is grateful for the generous support of the Phoenix ARCS Foundation. L.M.C.s and Y.-L.W.s research were supported by NSF AAG and NASA Origins of Solar Systems grants. V.B. was supported in part by the NSF Graduate Research Fellowship Program (DGE-1143953). We thank the anonymous referee for a careful, timely review that significantly improved the manuscript. Facility: Magellan:Clay (MagAO+Clio) .


Proceedings of SPIE, the International Society for Optical Engineering | 2007

The open-loop control of MEMS: modeling and experimental results

Katie M. Morzinski; Kennet B. W. Harpsøe; Donald Gavel; S. Mark Ammons

As adaptive optics (AO) technology progresses, both wide-field and high-order wavefront correction systems become reachable. Deformable mirrors (DMs) in these advanced architectures must exhibit exemplary performance to give low wavefront error. Such DMs must be economically attainable, meet stroke as well as flatness requirements, and show stable and repeatable actuation. Micro-electrical mechanical systems (MEMS) deformable mirrors, undergoing testing and characterization in the Laboratory for Adaptive Optics (LAO) at the University of California at Santa Cruz, show promise on these fronts. In addition to requiring advanced deformable mirror technology, these progressive AO architectures require advanced DM control algorithms. We therefore present a formulation for accurate open-loop control of MEMS deformable mirrors. The electrostatic actuators in a discrete-actuator MEMS device are attached via posts to a thin reflective top plate. The plate itself can be well-modeled by the thin plate equation. The actuators, although nonlinear in their response to applied voltage and deformation, are independent of each other except through forces transmitted by the top plate and can be empirically modeled via a calibration procedure we will describe. In this paper we present the modeling and laboratory results. So far in the lab we have achieved open loop control to approximately 15 nm accuracy in response to arbitrary commands of approximately 500 nm amplitude. Open-loop control enables a wealth of new applications for astronomical adaptive optics instruments, particularly in multi-object integral field spectroscopy, which we will describe.


Astronomy and Astrophysics | 2015

The LEECH Exoplanet Imaging Survey. Further constraints on the planet architecture of the HR 8799 system

A.-L. Maire; A. Skemer; P. Hinz; S. Desidera; Simone Esposito; R. Gratton; Francesco Marzari; M. F. Skrutskie; Beth A. Biller; Denis Defrere; Vanessa P. Bailey; Jarron M. Leisenring; Daniel Apai; M. Bonnefoy; Wolfgang Brandner; Esther Buenzli; R. U. Claudi; Laird M. Close; Justin R. Crepp; R. J. De Rosa; J. A. Eisner; Jonathan J. Fortney; T. Henning; Karl-Heinz Hofmann; T. Kopytova; Jared R. Males; D. Mesa; Katie M. Morzinski; Apurva Oza; Jenny Patience

© ESO, 2015. Context. Astrometric monitoring of directly imaged exoplanets allows the study of their orbital parameters and system architectures. Because most directly imaged planets have long orbital periods (>20 AU), accurate astrometry is challenging when based on data acquired on timescales of a few years and usually with different instruments. The LMIRCam camera on the Large Binocular Telescope is being used for the LBT Exozodi Exoplanet Common Hunt (LEECH) survey to search for and characterize young and adolescent exoplanets in L′ band (3.8 μm), including their system architectures. Aims. We first aim to provide a good astrometric calibration of LMIRCam. Then, we derive new astrometry, test the predictions of the orbital model of 8:4:2:1 mean motion resonance proposed for the system, and perform new orbital fitting of the HR 8799 bcde planets. We also present deep limits on a putative fifth planet inside the known planets. Methods. We use observations of HR 8799 and the Θ1 Ori C field obtained during the same run in October 2013. Results. We first characterize the distortion of LMIRCam. We determine a platescale and a true north orientation for the images of 10.707±0.012 mas/pix and -0.430±0.076°, respectively. The errors on the platescale and true north orientation translate into astrometric accuracies at a separation of 1′′ of 1.1 mas and 1.3 mas, respectively. The measurements for all planets agree within 3σ with a predicted ephemeris. The orbital fitting based on the new astrometric measurements favors an architecture for the planetary system based on 8:4:2:1 mean motion resonance. The detection limits allow us to exclude a fifth planet slightly brighter or more massive than HR 8799 b at the location of the 2:1 resonance with HR 8799 e (∼9.5 AU) and about twice as bright as HR 8799 cde at the location of the 3:1 resonance with HR 8799 e (∼7.5 AU).


The Astrophysical Journal | 2014

The Gemini NICI planet-finding campaign: The orbit of the young exoplanet β pictoris b

Eric L. Nielsen; Michael C. Liu; Zahed Wahhaj; Beth A. Biller; Thomas L. Hayward; Jared R. Males; Laird M. Close; Katie M. Morzinski; Andrew J. Skemer; Marc J. Kuchner; Timothy J. Rodigas; Philip M. Hinz; Mark Richard Chun; Christ Ftaclas; Douglas W. Toomey

We present new astrometry for the young (12-21 Myr) exoplanet beta Pictoris b taken with the Gemini/NICI and Magellan/MagAO instruments between 2009 and 2012. The high dynamic range of our observations allows us to measure the relative position of beta Pic b with respect to its primary star with greater accuracy than previous observations. Based on a Markov Chain Monte Carlo analysis, we find the planet has an orbital semi-major axis of 9.1 (+ 5.3 / - 0.5) AU and orbital eccentricity less than 0.15 at 68% confidence (with 95% confidence intervals of 8.2 - 48 AU and 0.00 - 0.82 for semi-major axis and eccentricity, respectively, due to a long narrow degenerate tail between the two). We find that the planet has reached its maximum projected elongation, enabling higher precision determination of the orbital parameters than previously possible, and that the planets projected separation is currently decreasing. With unsaturated data of the entire beta Pic system (primary star, planet, and disk) obtained thanks to NICIs semitransparent focal plane mask, we are able to tightly constrain the relative orientation of the circumstellar components. We find the orbital plane of the planet lies between the inner and outer disks: the position angle (P.A.) of nodes for the planets orbit (211.8 +/- 0.3 deg) is 7.4 sigma greater than the P.A. of the spine of the outer disk and 3.2 sigma less than the warped inner disk P.A., indicating the disk is not collisionally relaxed. Finally, for the first time we are able to dynamically constrain the mass of the primary star beta Pic to 1.76 (+0.18 / -0.27) solar mass.


Proceedings of SPIE | 2014

Gemini planet imager observational calibrations V: Astrometry and distortion

Quinn Konopacky; Sandrine Thomas; Bruce A. Macintosh; Daren Dillon; Naru Sadakuni; Jérôme Maire; Michael P. Fitzgerald; Sasha Hinkley; Paul Kalas; Thomas M. Esposito; Christian Marois; Patrick Ingraham; Franck Marchis; Marshall D. Perrin; James R. Graham; Jason J. Wang; Robert J. De Rosa; Katie M. Morzinski; Laurent Pueyo; Jeffrey K. Chilcote; James E. Larkin; Daniel C. Fabrycky; Stephen J. Goodsell; Ben R. Oppenheimer; Jenny Patience; Leslie Saddlemyer; Anand Sivaramakrishnan

We present the results of both laboratory and on sky astrometric characterization of the Gemini Planet Imager (GPI). This characterization includes measurement of the pixel scale* of the integral field spectrograph (IFS), the position of the detector with respect to north, and optical distortion. Two of these three quantities (pixel scale and distortion) were measured in the laboratory using two transparent grids of spots, one with a square pattern and the other with a random pattern. The pixel scale in the laboratory was also estimate using small movements of the artificial star unit (ASU) in the GPI adaptive optics system. On sky, the pixel scale and the north angle are determined using a number of known binary or multiple systems and Solar System objects, a subsample of which had concurrent measurements at Keck Observatory. Our current estimate of the GPI pixel scale is 14.14 ± 0.01 millarcseconds/pixel, and the north angle is -1.00 ± 0.03°. Distortion is shown to be small, with an average positional residual of 0.26 pixels over the field of view, and is corrected using a 5th order polynomial. We also present results from Monte Carlo simulations of the GPI Exoplanet Survey (GPIES) assuming GPI achieves ~1 milliarcsecond relative astrometric precision. We find that with this precision, we will be able to constrain the eccentricities of all detected planets, and possibly determine the underlying eccentricity distribution of widely separated Jovians.

Collaboration


Dive into the Katie M. Morzinski's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Timothy J. Rodigas

Carnegie Institution for Science

View shared research outputs
Researchain Logo
Decentralizing Knowledge