Katie Parkinson
University of Manchester
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Katie Parkinson.
Nature | 2007
Samuel J. Fountain; Katie Parkinson; Mark Young; Lishuang Cao; Christopher R. L. Thompson; R. Alan North
P2X receptors are membrane ion channels gated by extracellular ATP that are found widely in vertebrates, but not previously in microbes. Here we identify a weakly related gene in the genome of the social amoeba Dictyostelium discoideum, and show, with the use of heterologous expression in human embryonic kidney cells, that it encodes a membrane ion channel activated by ATP (30–100 μM). Site-directed mutagenesis revealed essential conservation of structure–function relations with P2X receptors of higher organisms. The receptor was insensitive to the usual P2X antagonists but was blocked by nanomolar concentrations of Cu2+ ions. In D. discoideum, the receptor was found on intracellular membranes, with prominent localization to an osmoregulatory organelle, the contractile vacuole. Targeted disruption of the gene in D. discoideum resulted in cells that were unable to regulate cell volume in hypotonic conditions. Cell swelling in these mutant cells was accompanied by a marked inhibition of contractile vacuole emptying. These findings demonstrate a new functional role for P2X receptors on intracellular organelles, in this case in osmoregulation.
Journal of Cell Science | 2009
Katie Parkinson; Parvin Bolourani; David Traynor; Nicola L. Aldren; Robert R. Kay; Gerald Weeks; Christopher R. L. Thompson
Regulated cell adhesion and motility have important roles during growth, development and tissue homeostasis. Consequently, great efforts have been made to identify genes that control these processes. One candidate is Rap1, as it has been implicated in the regulation of adhesion and motility in cell culture. To further study the role of Rap1 during multicellular development, we generated a mutant in a potential Rap1 GTPase activating protein (RapGAPB) in Dictyostelium. rapGAPB– cells have increased levels of active Rap1 compared with wild-type cells, indicating that RapGAPB regulates Rap1 activity. Furthermore, rapGAPB– cells exhibit hallmark phenotypes of other known mutants with hyperactivated Rap1, including increased substrate adhesion and abnormal F-actin distribution. However, unlike these other mutants, rapGAPB– cells do not exhibit impaired motility or chemotaxis, indicating that RapGAPB might only regulate specific roles of Rap1. Importantly, we also found that RapGAPB regulates Rap1 activity during multicellular development and is required for normal morphogenesis. First, streams of aggregating rapGAPB– cells break up as a result of decreased cell-cell adhesion. Second, rapGAPB– cells exhibit cell-autonomous defects in prestalk cell patterning. Using cell-type-specific markers, we demonstrate that RapGAPB is required for the correct sorting behaviour of different cell types. Finally, we show that inactivation of RapGAPB affects prestalk and prespore cell adhesion. We therefore propose that a possible mechanism for RapGAPB-regulated cell sorting is through differential adhesion.
Nature Cell Biology | 2014
Katie Parkinson; Abigail E. Baines; Thomas Keller; Nicole Gruenheit; Laricia Bragg; R. Alan North; Christopher R. L. Thompson
Rab GTPases play key roles in the delivery, docking and fusion of intracellular vesicles. However, the mechanism by which spatial and temporal regulation of Rab GTPase activity is controlled is poorly understood. Here we describe a mechanism by which localized calcium release through a vesicular ion channel controls Rab GTPase activity. We show that activation of P2XA, an intracellular ion channel localized to the Dictyostelium discoideum contractile vacuole system, results in calcium efflux required for downregulation of Rab11a activity and efficient vacuole fusion. Vacuole fusion and Rab11a downregulation require the activity of CnrF, an EF-hand-containing Rab GAP found in a complex with Rab11a and P2XA. CnrF Rab GAP activity for Rab11a is enhanced by the presence of calcium and the EF-hand domain. These findings suggest that P2XA activation results in vacuolar calcium release, which triggers activation of CnrF Rab GAP activity and subsequent downregulation of Rab11a to allow vacuole fusion.
PLOS Biology | 2011
Katie Parkinson; Neil J. Buttery; Jason B. Wolf; Christopher R. L. Thompson
The evolution of cooperation is a paradox because natural selection should favor exploitative individuals that avoid paying their fair share of any costs. Such conflict between the self-interests of cooperating individuals often results in the evolution of complex, opponent-specific, social strategies and counterstrategies. However, the genetic and biological mechanisms underlying complex social strategies, and therefore the evolution of cooperative behavior, are largely unknown. To address this dearth of empirical data, we combine mathematical modeling, molecular genetic, and developmental approaches to test whether variation in the production of and response to social signals is sufficient to generate the complex partner-specific social success seen in the social amoeba Dictyostelium discoideum. Firstly, we find that the simple model of production of and response to social signals can generate the sort of apparent complex changes in social behavior seen in this system, without the need for partner recognition. Secondly, measurements of signal production and response in a mutant with a change in a single gene that leads to a shift in social behavior provide support for this model. Finally, these simple measurements of social signaling can also explain complex patterns of variation in social behavior generated by the natural genetic diversity found in isolates collected from the wild. Our studies therefore demonstrate a novel and elegantly simple underlying mechanistic basis for natural variation in complex social strategies in D. discoideum. More generally, they suggest that simple rules governing interactions between individuals can be sufficient to generate a diverse array of outcomes that appear complex and unpredictable when those rules are unknown.
Current Biology | 2015
Jason B. Wolf; Jennifer A. Howie; Katie Parkinson; Nicole Gruenheit; Diogo Melo; Daniel E. Rozen; Christopher R. L. Thompson
Summary Cooperation is ubiquitous across the tree of life, from simple microbes to the complex social systems of animals [1]. Individuals cooperate by engaging in costly behaviors that can be exploited by other individuals who benefit by avoiding these associated costs. Thus, if successful exploitation of social partners during cooperative interactions increases relative fitness, then we expect selection to lead to the emergence of a single optimal winning strategy in which individuals maximize their gain from cooperation while minimizing their associated costs [2]. Such social “cheating” appears to be widespread in nature [3], including in several microbial systems [4–11], but despite the fitness advantages favoring social cheating, populations tend to harbor significant variation in social success rather than a single optimal winning strategy. Using the social amoeba Dictyostelium discoideum, we provide a possible explanation for the coexistence of such variation. We find that genotypes typically designated as “cheaters” [12] because they produce a disproportionate number of spores in chimeric fruiting bodies do not actually gain higher fitness as a result of this apparent advantage because they produce smaller, less viable spores than putative “losers.” As a consequence of this trade-off between spore number and viability, genotypes with different spore production strategies, which give the appearance of differential social success, ultimately have similar realized fitness. These findings highlight the limitations of using single fitness proxies in evolutionary studies and suggest that interpreting social trait variation in terms of strategies like cheating or cooperating may be misleading unless these behaviors are considered in the context of the true multidimensional nature of fitness.
Journal of Biological Chemistry | 2013
Abigail E. Baines; Katie Parkinson; Joan A. Sim; Laricia Bragg; Christopher R. L. Thompson; R. Alan North
Background: Dictyostelium discoideum P2X receptors are found on the contractile vacuole. Results: Four of the five receptors (P2XA, P2XB, P2XD, and P2XE) form ATP-activated channels but differ in their optimal ionic conditions. Conclusion: Properties of five P2X receptors correlate with their rescue of an osmoregulatory phenotype in P2XA-deficient Dictyostelium cells. Significance: A P2X receptor is required for normal contractile vacuole operation. The Dictyostelium discoideum genome encodes five proteins that share weak sequence similarity with vertebrate P2X receptors. Unlike vertebrate P2X receptors, these proteins are not expressed on the surface of cells, but populate the tubules and bladders of the contractile vacuole. In this study, we expressed humanized cDNAs of P2XA, P2XB, P2XC, P2XD, and P2XE in human embryonic kidney cells and altered the ionic and proton environment in an attempt to reflect the situation in amoeba. Recording of whole-cell membrane currents showed that four receptors operated as ATP-gated channels (P2XA, P2XB, P2XD, and P2XE). At P2XA receptors, ATP was the only effective agonist of 17 structurally related putative ligands that were tested. Extracellular sodium, compared with potassium, strongly inhibited ATP responses in P2XB, P2XD, and P2XE receptors. Increasing the proton concentration (pH 6.2) accelerated desensitization at P2XA receptors and decreased currents at P2XD receptors, but increased the currents at P2XB and P2XE receptors. Dictyostelium lacking P2XA receptors showed impaired regulatory volume decrease in hypotonic solution. This phenotype was readily rescued by overexpression of P2XA and P2XD receptors, partially rescued by P2XB and P2XE receptors, and not rescued by P2XC receptors. The failure of the nonfunctional receptor P2XC to restore the regulatory volume decrease highlights the importance of ATP activation of P2X receptors for a normal response to hypo-osmotic shock, and the weak rescue by P2XB and P2XE receptors indicates that there is limited functional redundancy among Dictyostelium P2X receptors.
Developmental Cell | 2018
Nicole Gruenheit; Katie Parkinson; Christopher A. Brimson; Satoshi Kuwana; Edward J. Johnson; Koki Nagayama; Jack Llewellyn; William M. Salvidge; Balint Stewart; Thomas Keller; Wouter van Zon; Simon L. Cotter; Christopher R. L. Thompson
Summary Cell-cell heterogeneity can facilitate lineage choice during embryonic development because it primes cells to respond to differentiation cues. However, remarkably little is known about the origin of heterogeneity or whether intrinsic and extrinsic variation can be controlled to generate reproducible cell type proportioning seen in vivo. Here, we use experimentation and modeling in D. discoideum to demonstrate that population-level cell cycle heterogeneity can be optimized to generate robust cell fate proportioning. First, cell cycle position is quantitatively linked to responsiveness to differentiation-inducing signals. Second, intrinsic variation in cell cycle length ensures cells are randomly distributed throughout the cell cycle at the onset of multicellular development. Finally, extrinsic perturbation of optimal cell cycle heterogeneity is buffered by compensatory changes in global signal responsiveness. These studies thus illustrate key regulatory principles underlying cell-cell heterogeneity optimization and the generation of robust and reproducible fate choice in development.
Trends in Genetics | 2007
Kevin R. Foster; Katie Parkinson; Christopher R. L. Thompson
Nature Communications | 2017
Nicole Gruenheit; Katie Parkinson; Balint Stewart; Jennifer A. Howie; Jason B. Wolf; Christopher R. L. Thompson
Journal of Cell Science | 2011
Simone L. Blagg; Suzanne E. Battom; Sarah J. Annesley; Thomas Keller; Katie Parkinson; Jasmine M. F. Wu; Paul R. Fisher; Christopher R. L. Thompson