Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Katja C. Seltmann is active.

Publication


Featured researches published by Katja C. Seltmann.


PLOS Biology | 2015

Finding Our Way through Phenotypes

Andrew R. Deans; Suzanna E. Lewis; Eva Huala; Salvatore S. Anzaldo; Michael Ashburner; James P. Balhoff; David C. Blackburn; Judith A. Blake; J. Gordon Burleigh; Bruno Chanet; Laurel Cooper; Mélanie Courtot; Sándor Csösz; Hong Cui; Wasila M. Dahdul; Sandip Das; T. Alexander Dececchi; Agnes Dettai; Rui Diogo; Robert E. Druzinsky; Michel Dumontier; Nico M. Franz; Frank Friedrich; George V. Gkoutos; Melissa Haendel; Luke J. Harmon; Terry F. Hayamizu; Yongqun He; Heather M. Hines; Nizar Ibrahim

Imagine if we could compute across phenotype data as easily as genomic data; this article calls for efforts to realize this vision and discusses the potential benefits.


PLOS ONE | 2010

A Gross Anatomy Ontology for Hymenoptera

Matthew J. Yoder; István Mikó; Katja C. Seltmann; Matthew A. Bertone; Andrew R. Deans

Hymenoptera is an extraordinarily diverse lineage, both in terms of species numbers and morphotypes, that includes sawflies, bees, wasps, and ants. These organisms serve critical roles as herbivores, predators, parasitoids, and pollinators, with several species functioning as models for agricultural, behavioral, and genomic research. The collective anatomical knowledge of these insects, however, has been described or referred to by labels derived from numerous, partially overlapping lexicons. The resulting corpus of information—millions of statements about hymenopteran phenotypes—remains inaccessible due to language discrepancies. The Hymenoptera Anatomy Ontology (HAO) was developed to surmount this challenge and to aid future communication related to hymenopteran anatomy. The HAO was built using newly developed interfaces within mx, a Web-based, open source software package, that enables collaborators to simultaneously contribute to an ontology. Over twenty people contributed to the development of this ontology by adding terms, genus differentia, references, images, relationships, and annotations. The database interface returns an Open Biomedical Ontology (OBO) formatted version of the ontology and includes mechanisms for extracting candidate data and for publishing a searchable ontology to the Web. The application tools are subject-agnostic and may be used by others initiating and developing ontologies. The present core HAO data constitute 2,111 concepts, 6,977 terms (labels for concepts), 3,152 relations, 4,361 sensus (links between terms, concepts, and references) and over 6,000 text and graphical annotations. The HAO is rooted with the Common Anatomy Reference Ontology (CARO), in order to facilitate interoperability with and future alignment to other anatomy ontologies, and is available through the OBO Foundry ontology repository and BioPortal. The HAO provides a foundation through which connections between genomic, evolutionary developmental biology, phylogenetic, taxonomic, and morphological research can be actualized. Inherent mechanisms for feedback and content delivery demonstrate the effectiveness of remote, collaborative ontology development and facilitate future refinement of the HAO.


PLOS ONE | 2012

On Dorsal Prothoracic Appendages in Treehoppers (Hemiptera: Membracidae) and the Nature of Morphological Evidence

István Mikó; Frank Friedrich; Matthew J. Yoder; Heather M. Hines; Lewis L. Deitz; Matthew A. Bertone; Katja C. Seltmann; Matthew S. Wallace; Andrew R. Deans

A spectacular hypothesis was published recently, which suggested that the “helmet” (a dorsal thoracic sclerite that obscures most of the body) of treehoppers (Insecta: Hemiptera: Membracidae) is connected to the 1st thoracic segment (T1; prothorax) via a jointed articulation and therefore was a true appendage. Furthermore, the “helmet” was interpreted to share multiple characteristics with wings, which in extant pterygote insects are present only on the 2nd (T2) and 3rd (T3) thoracic segments. In this context, the “helmet” could be considered an evolutionary novelty. Although multiple lines of morphological evidence putatively supported the “helmet”-wing homology, the relationship of the “helmet” to other thoracic sclerites and muscles remained unclear. Our observations of exemplar thoraces of 10 hemipteran families reveal multiple misinterpretations relevant to the “helmet”-wing homology hypothesis as originally conceived: 1) the “helmet” actually represents T1 (excluding the fore legs); 2) the “T1 tergum” is actually the anterior dorsal area of T2; 3) the putative articulation between the “helmet” and T1 is actually the articulation between T1 and T2. We conclude that there is no dorsal, articulated appendage on the membracid T1. Although the posterior, flattened, cuticular evagination (PFE) of the membracid T1 does share structural and genetic attributes with wings, the PFE is actually widely distributed across Hemiptera. Hence, the presence of this structure in Membracidae is not an evolutionary novelty for this clade. We discuss this new interpretation of the membracid T1 and the challenges of interpreting and representing morphological data more broadly. We acknowledge that the lack of data standards for morphology is a contributing factor to misinterpreted results and offer an example for how one can reduce ambiguity in morphology by referencing anatomical concepts in published ontologies.


ZooKeys | 2012

Results and insights from the NCSU Insect Museum GigaPan project.

Matthew A. Bertone; Robert Blinn; Tanner Stanfield; Kelly J. Dew; Katja C. Seltmann; Andrew R. Deans

Abstract Pinned insect specimens stored in museum collections are a fragile and valuable resource for entomological research. As such, they are usually kept away from viewing by the public and hard to access by experts. Here we present a method for mass imaging insect specimens, using GigaPan technology to achieve highly explorable, many-megapixel panoramas of insect museum drawers. We discuss the advantages and limitations of the system, and describe future avenues of collections research using this technology.


PLOS ONE | 2013

Utilizing descriptive statements from the biodiversity heritage library to expand the Hymenoptera Anatomy Ontology.

Katja C. Seltmann; Zsolt Pénzes; Matthew J. Yoder; Matthew A. Bertone; Andrew R. Deans

Hymenoptera, the insect order that includes sawflies, bees, wasps, and ants, exhibits an incredible diversity of phenotypes, with over 145,000 species described in a corpus of textual knowledge since Carolus Linnaeus. In the absence of specialized training, often spanning decades, however, these articles can be challenging to decipher. Much of the vocabulary is domain-specific (e.g., Hymenoptera biology), historically without a comprehensive glossary, and contains much homonymous and synonymous terminology. The Hymenoptera Anatomy Ontology was developed to surmount this challenge and to aid future communication related to hymenopteran anatomy, as well as provide support for domain experts so they may actively benefit from the anatomy ontology development. As part of HAO development, an active learning, dictionary-based, natural language recognition tool was implemented to facilitate Hymenoptera anatomy term discovery in literature. We present this tool, referred to as the ‘Proofer’, as part of an iterative approach to growing phenotype-relevant ontologies, regardless of domain. The process of ontology development results in a critical mass of terms that is applied as a filter to the source collection of articles in order to reveal term occurrence and biases in natural language species descriptions. Our results indicate that taxonomists use domain-specific terminology that follows taxonomic specialization, particularly at superfamily and family level groupings and that the developed Proofer tool is effective for term discovery, facilitating ontology construction.


Database | 2013

Matching arthropod anatomy ontologies to the Hymenoptera Anatomy Ontology: results from a manual alignment

Matthew A. Bertone; István Mikó; Matthew J. Yoder; Katja C. Seltmann; James P. Balhoff; Andrew R. Deans

Matching is an important step for increasing interoperability between heterogeneous ontologies. Here, we present alignments we produced as domain experts, using a manual mapping process, between the Hymenoptera Anatomy Ontology and other existing arthropod anatomy ontologies (representing spiders, ticks, mosquitoes and Drosophila melanogaster). The resulting alignments contain from 43 to 368 mappings (correspondences), all derived from domain-expert input. Despite the many pairwise correspondences, only 11 correspondences were found in common between all ontologies, suggesting either major intrinsic differences between each ontology or gaps in representing each group’s anatomy. Furthermore, we compare our findings with putative correspondences from Bioportal (derived from LOOM software) and summarize the results in a total evidence alignment. We briefly discuss characteristics of the ontologies and issues with the matching process. Database URL: http://purl.obolibrary.org/obo/hao/2012-07-18/arthropod-mappings.obo


Cladistics | 2017

Areas of endemism in the Nearctic: a case study of 1339 species of Miridae (Insecta: Hemiptera) and their plant hosts

Christiane Weirauch; Katja C. Seltmann; Randall T. Schuh; Michael D. Schwartz; Christine A. Johnson; Mary Ann Feist; Pamela S. Soltis

Areas of endemism are essential first hypotheses in investigating historical biogeography, but there is a surprising paucity of such hypotheses for the Nearctic region. Miridae, the plant bugs, are an excellent taxon to study in this context, because this group combines high species diversity, often small distribution ranges, a history of modern taxonomic revisions, and comprehensive electronic data capture and data cleaning that have resulted in an exceptionally error‐free geospatial data set. Many Miridae are phytophagous and feed on only one or a small number of host plant species. The programs ndm/vndm are here used on plant bug and plant data sets to address two main objectives: (i) identify areas of endemism for plant bugs based on parameters used in a recent study that focused on Nearctic mammals; and (ii) discuss hypotheses on areas of endemism based on plant bug distributions in the context of areas identified by their host plant species. Given the narrow distribution ranges of many species of Miridae, the analytical results allow for tests of the prediction that areas of endemism for Miridae are smaller and more numerous, especially in the Western Nearctic, than are those of their host plants. Analyses of the default plant bug data set resulted in 45 areas of endemism, 35 of them north of Mexico and many located in the Western Nearctic; areas in the Nearctic are more numerous and smaller than those identified by mammals. The host plant data set resulted in ten areas of endemism, and even though the size range of areas is similar between the Miridae and plant data sets, the average area size is smaller in the Miridae data set. These results allow for the conclusion that the Miridae indeed present a valuable model system to investigate areas of endemism in the Nearctic.


Zootaxa | 2017

LepNet: The Lepidoptera of North America Network

Katja C. Seltmann; Neil S. Cobb; Lawrence F. Gall; Charles R. Bartlett; M. Anne Basham; Isabelle Betancourt; Christy Bills; Benjamin Brandt; Richard L. Brown; Charles Bundy; Michael S. Caterino; Caitlin Chapman; Anthony I. Cognato; Julia Colby; Stephen P. Cook; Kathryn M. Daly; Lee A. Dyer; Nico M. Franz; Jon Gelhaus; Christopher C. Grinter; Charles E. Harp; Rachel L. Hawkins; Steve Heydon; Geena M. Hill; Stacey Huber; Norman F. Johnson; Akito Y. Kawahara; Lynn S. Kimsey; Boris C. Kondratieff; Frank-Thorsten Krell

The Lepidoptera of North America Network, or LepNet, is a digitization effort recently launched to mobilize biodiversity data from 3 million specimens of butterflies and moths in United States natural history collections (http://www.lep-net.org/). LepNet was initially conceived as a North American effort but the project seeks collaborations with museums and other organizations worldwide. The overall goal is to transform Lepidoptera specimen data into readily available digital formats to foster global research in taxonomy, ecology and evolutionary biology.


ZooKeys | 2009

Revision of the Oriental genera of Agathidinae (Hymenoptera: Braconidae) with an emphasis on Thailand including interactive keys to genera published in three different formats

Michael J. Sharkey; Dicky S. Yu; Simon van Noort; Katja C. Seltmann; Lyubomir Penev


ZooKeys | 2009

Data publication and dissemination of interactive keys under the open access model ZooKeys working example

Lyubomir Penev; Michael J. Sharkey; Terry L. Erwin; Simon van Noort; Matthew Buffi; Katja C. Seltmann; Norman F. Johnson; Matt Taylor; F. Christian; Michael J Dallwitz

Collaboration


Dive into the Katja C. Seltmann's collaboration.

Top Co-Authors

Avatar

Andrew R. Deans

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

István Mikó

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Matthew A. Bertone

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

Lyubomir Penev

Bulgarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Matthew L. Buffington

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

James P. Balhoff

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Heather M. Hines

Pennsylvania State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge