Katja E. Odening
University of Freiburg
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Katja E. Odening.
Journal of Clinical Investigation | 2008
Michael Brunner; Xuwen Peng; Gong Xin Liu; Xiao-Qin Ren; Ohad Ziv; Bum-Rak Choi; Rajesh Mathur; Mohammed Hajjiri; Katja E. Odening; Eric Steinberg; Eduardo J. Folco; Ekatherini Pringa; Jason Centracchio; Roland R. Macharzina; Tammy Donahay; Lorraine Schofield; Naveed Rana; Malcolm M. Kirk; Gary F. Mitchell; Athena Poppas; Manfred Zehender; Gideon Koren
Long QT syndrome (LQTS) is a heritable disease associated with ECG QT interval prolongation, ventricular tachycardia, and sudden cardiac death in young patients. Among genotyped individuals, mutations in genes encoding repolarizing K+ channels (LQT1:KCNQ1; LQT2:KCNH2) are present in approximately 90% of affected individuals. Expression of pore mutants of the human genes KCNQ1 (KvLQT1-Y315S) and KCNH2 (HERG-G628S) in the rabbit heart produced transgenic rabbits with a long QT phenotype. Prolongations of QT intervals and action potential durations were due to the elimination of IKs and IKr currents in cardiomyocytes. LQT2 rabbits showed a high incidence of spontaneous sudden cardiac death (>50% at 1 year) due to polymorphic ventricular tachycardia. Optical mapping revealed increased spatial dispersion of repolarization underlying the arrhythmias. Both transgenes caused downregulation of the remaining complementary IKr and IKs without affecting the steady state levels of the native polypeptides. Thus, the elimination of 1 repolarizing current was associated with downregulation of the reciprocal repolarizing current rather than with the compensatory upregulation observed previously in LQTS mouse models. This suggests that mutant KvLQT1 and HERG interacted with the reciprocal wild-type alpha subunits of rabbit ERG and KvLQT1, respectively. These results have implications for understanding the nature and heterogeneity of cardiac arrhythmias and sudden cardiac death.
Heart Rhythm | 2012
Katja E. Odening; Bum-Rak Choi; Gong Xin Liu; Kathryn M Hartmann; Ohad Ziv; Leonard Chaves; Lorraine Schofield; Jason Centracchio; Manfred Zehender; Xuwen Peng; Michael Brunner; Gideon Koren
BACKGROUND Postpubertal women with inherited long QT syndrome type 2 (LQT2) are at increased risk for polymorphic ventricular tachycardia (pVT) and sudden cardiac death (SCD), particularly during the postpartum period. OBJECTIVE To investigate whether sex hormones directly modulate the arrhythmogenic risk in LQTS. METHODS Prepubertal ovariectomized transgenic LQT2 rabbits were treated with estradiol (EST), progesterone (PROG), dihydrotestosterone (DHT), or placebo (OVX). RESULTS During 8 weeks of treatment, major cardiac events-spontaneous pVT or SCD-occurred in 5 of the 7 EST rabbits and in 2 of the 9 OVX rabbits (P <.05); in contrast, no events occurred in 9 PROG rabbits and 6 DHT rabbits (P <.01 vs PROG; P <.05 vs DHT). Moreover, EST increased the incidence of pVT (P <.05 vs OVX), while PROG reduced premature ventricular contractions, bigeminy, couplets, triplets, and pVT (P <.01 vs OVX; P <.001 vs EST). In vivo electrocardiographic monitoring, in vivo electrophysiological studies, and ex vivo optical mapping studies revealed that EST promoted SCD by steepening the QT/RR slope (P <.05), by prolonging cardiac refractoriness (P <.05), and by altering the spatial pattern of action potential duration dispersion. Isoproterenol-induced Ca(2+) oscillations resulted in early afterdepolarizations in EST-treated hearts (4 of 4), while PROG prevented SCD by eliminating this early afterdepolarization formation in 4 of the 7 hearts (P = .058 vs EST; P <.05 vs OVX). Analyses of ion currents demonstrated that EST increased the density of I(Ca,L) as compared with OVX (P <.05) while PROG decreased it (P <.05). CONCLUSION This study reveals the proarrhythmic effect of EST and the antiarrhythmic effect of PROG in LQT2 in vivo, outlining a new potential antiarrhythmic therapy for LQTS.
American Journal of Physiology-heart and Circulatory Physiology | 2008
Katja E. Odening; Omar Hyder; Leonard Chaves; Lorraine Schofield; Michael Brunner; Malcolm M. Kirk; Manfred Zehender; Xuwen Peng; Gideon Koren
Anesthetic agents prolong cardiac repolarization by blocking ion currents. However, the clinical relevance of this blockade in subjects with reduced repolarization reserve is unknown. We have generated transgenic long QT syndromes type 1 (LQT1) and type 2 (LQT2) rabbits that lack slow delayed rectifier K+ currents (IKs) or rapidly activating K+ currents (IKr) and used them as a model system to detect the channel-blocking properties of anesthetic agents. Therefore, LQT1, LQT2, and littermate control (LMC) rabbits were administered isoflurane, thiopental, midazolam, propofol, or ketamine, and surface ECGs were analyzed. Genotype-specific heart rate correction formulas were used to determine the expected QT interval at a given heart rate. The QT index (QTi) was calculated as percentage of the observed QT/expected QT. Isoflurane, a drug that blocks IKs) prolonged the QTi only in LQT2 and LMC but not in LQT1 rabbits. Midazolam, which blocks inward rectifier K+ current (IK1), prolonged the QTi in both LQT1 and LQT2 but not in LMC. Thiopental, which blocks both IKs and IK1, increased the QTi in LQT2 and LMC more than in LQT1. By contrast, ketamine, which does not block IKr, IKs, or IK1, did not alter the QTi in any group. Finally, anesthesia with isoflurane or propofol resulted in lethal polymorphic ventricular tachycardia (pVT) in three out of nine LQT2 rabbits. Transgenic LQT1 and LQT2 rabbits could serve as an in vivo model in which to examine the pharmacogenomics of drug-induced QT prolongation of anesthetic agents and their proarrhythmic potential. Transgenic LQT2 rabbits developed pVT under isoflurane and propofol, underlining the proarrhythmic risk of IKs blockers in subjects with reduced IKr.
The Journal of Physiology | 2009
Ohad Ziv; Eduardo Morales; Yoon-Kyu Song; Xuwen Peng; Katja E. Odening; Alfred E. Buxton; Alain Karma; Gideon Koren; Bum-Rak Choi
Enhanced dispersion of repolarization has been proposed as an important mechanism in long QT related arrhythmias. Dispersion can be dynamic and can be augmented with the occurrence of spatially out‐of‐phase action potential duration (APD) alternans (discordant alternans; DA). We investigated the role of tissue heterogeneity in generating DA using a novel transgenic rabbit model of type 2 long QT syndrome (LQT2). Littermate control (LMC) and LQT2 rabbit hearts (n= 5 for each) were retrogradely perfused and action potentials were mapped from the epicardial surface using di‐4‐ANEPPS and a high speed CMOS camera. Spatial dispersion (ΔAPD and Δslope of APD restitution) were both increased in LQT2 compared to LMC (ΔAPD: 34 ± 7 ms vs. 23 ± 6 ms; Δslope:1.14 ± 0.23 vs. 0.59 ± 0.19). Onset of DA under a ramp stimulation protocol was seen at longer pacing cycle length (CL) in LQT2 compared to LMC hearts (206 ± 24 ms vs. 156 ± 5 ms). Nodal lines between regions with APD alternans out of phase from each other were correlated with conduction velocity (CV) alternation in LMC but not in LQT2 hearts. In LQT2 hearts, larger APD dispersion was associated with onset of DA at longer pacing CL. At shorter CLs, closer to ventricular fibrillation induction (VF), nodal lines in LQT2 (n= 2 out of 5) showed persistent complex beat‐to‐beat changes in nodal line formation of DA associated with competing contribution from CV restitution and tissue spatial heterogeneity, increasing vulnerability to conduction block. In conclusion, tissue heterogeneity plays a significant role in providing substrate for ventricular arrhythmia in LQT2 rabbits by facilitating DA onset and contributing to unstable nodal lines prone to reentry formation.
Circulation Research | 2014
Dmitry Terentyev; Colin M. Rees; Weiyan Li; Leroy L. Cooper; Hitesh K. Jindal; Xuwen Peng; Yichun Lu; Radmila Terentyeva; Katja E. Odening; Jean M. Daley; Kamana Bist; Bum-Rak Choi; Alain Karma; Gideon Koren
Rationale: Loss-of-function mutations in human ether go-go (HERG) potassium channels underlie long QT syndrome type 2 (LQT2) and are associated with fatal ventricular tachyarrhythmia. Previously, most studies focused on plasma membrane–related pathways involved in arrhythmogenesis in long QT syndrome, whereas proarrhythmic changes in intracellular Ca2+ handling remained unexplored. Objective: We investigated the remodeling of Ca2+ homeostasis in ventricular cardiomyocytes derived from transgenic rabbit model of LQT2 to determine whether these changes contribute to triggered activity in the form of early after depolarizations (EADs). Methods and Results: Confocal Ca2+ imaging revealed decrease in amplitude of Ca2+ transients and sarcoplasmic reticulum Ca2+ content in LQT2 myocytes. Experiments using sarcoplasmic reticulum–entrapped Ca2+ indicator demonstrated enhanced ryanodine receptor (RyR)–mediated sarcoplasmic reticulum Ca2+ leak in LQT2 cells. Western blot analyses showed increased phosphorylation of RyR in LQT2 myocytes versus controls. Coimmunoprecipitation experiments demonstrated loss of protein phosphatases type 1 and type 2 from the RyR complex. Stimulation of LQT2 cells with &bgr;-adrenergic agonist isoproterenol resulted in prolongation of the plateau of action potentials accompanied by aberrant Ca2+ releases and EADs, which were abolished by inhibition of Ca2+/calmodulin-dependent protein kinase type 2. Computer simulations showed that late aberrant Ca2+ releases caused by RyR hyperactivity promote EADs and underlie the enhanced triggered activity through increased forward mode of Na+/Ca2+ exchanger type 1. Conclusions: Hyperactive, hyperphosphorylated RyRs because of reduced local phosphatase activity enhance triggered activity in LQT2 syndrome. EADs are promoted by aberrant RyR-mediated Ca2+ releases that are present despite a reduction of sarcoplasmic reticulum content. Those releases increase forward mode Na+/Ca2+ exchanger type 1, thereby slowing repolarization and enabling L-type Ca2+ current reactivation.
Heart Rhythm | 2014
Katja E. Odening; Gideon Koren
Gender differences in cardiac repolarization and the arrhythmogenic risk of patients with inherited and acquired long QT syndromes are well appreciated clinically. Enhancing our knowledge of the mechanisms underlying these differences is critical to improve our therapeutic strategies for preventing sudden cardiac death in such patients. This review summarizes the effects of sex hormones on the expression and function of ion channels that control cardiac cell excitation and repolarization as well as key proteins that regulate Ca(2+) dynamics at the cellular level. Moreover, it examines the role of sex hormones in modifying the dynamic spatiotemporal (regional and transmural) heterogeneities in action potential duration (eg, the arrhythmogenic substrate) and the susceptibility to (sympathetic) triggered activity at the tissue, organ, and whole animal levels. Finally, it explores the implications of these effects on the management of patients with LQTS.
American Journal of Physiology-heart and Circulatory Physiology | 2010
Katja E. Odening; Malcolm M. Kirk; Michael Brunner; Ohad Ziv; Peem Lorvidhaya; Gong Xin Liu; Lorraine Schofield; Leonard Chaves; Xuwen Peng; Manfred Zehender; Bum-Rak Choi; Gideon Koren
We have generated transgenic rabbits lacking cardiac slow delayed-rectifier K(+) current [I(Ks); long QT syndrome type 1 (LQT1)] or rapidly activating delayed-rectifier K(+) current [I(Kr); long QT syndrome type 2 (LQT2)]. Rabbits with either genotype have prolonged action potential duration and QT intervals; however, only LQT2 rabbits develop atrioventricular (AV) blocks and polymorphic ventricular tachycardia. We therefore sought to characterize the genotype-specific differences in AV conduction and ventricular refractoriness in LQT1 and LQT2 rabbits. We carried out in vivo electrophysiological studies in LQT1, LQT2, and littermate control (LMC) rabbits at baseline, during isoproterenol infusion, and after a bolus of dofetilide and ex vivo optical mapping studies of the AV node/His-region at baseline and during dofetilide perfusion. Under isoflurane anesthesia, LQT2 rabbits developed infra-His blocks, decremental His conduction, and prolongation of the Wenckebach cycle length. In LQT1 rabbits, dofetilide altered the His morphology and slowed His conduction, resulting in intra-His block, and additionally prolonged the ventricular refractoriness, leading to pseudo-AV block. The ventricular effective refractory period (VERP) in right ventricular apex and base was significantly longer in LQT2 than LQT1 (P < 0.05) or LMC (P < 0.01), with a greater VERP dispersion in LQT2 than LQT1 rabbits. Isoproterenol reduced the VERP dispersion in LQT2 rabbits by shortening the VERP in the base more than in the apex but had no effect on VERP in LQT1. EPS and optical mapping experiments demonstrated genotype-specific differences in AV conduction and ventricular refractoriness. The occurrence of infra-His blocks in LQT2 rabbits under isoflurane and intra-His block in LQT1 rabbits after dofetilide suggest differential regional sensitivities of the rabbit His-Purkinje system to drugs blocking I(Kr) and I(Ks).
American Journal of Physiology-heart and Circulatory Physiology | 2012
Leroy L. Cooper; Katja E. Odening; Min-Sig Hwang; Leonard Chaves; Lorraine Schofield; Chantel Taylor; Anthony S. Gemignani; Gary F. Mitchell; John R. Forder; Bum-Rak Choi; Gideon Koren
Aging increases the risk for arrhythmias and sudden cardiac death (SCD). We aimed at elucidating aging-related electrical, functional, and structural changes in the heart and vasculature that account for this heightened arrhythmogenic risk. Young (5-9 mo) and old (3.5-6 yr) female New Zealand White (NZW) rabbits were subjected to in vivo hemodynamic, electrophysiological, and echocardiographic studies as well as ex vivo optical mapping, high-field magnetic resonance imaging (MRI), and histochemical experiments. Aging increased aortic stiffness (baseline pulse wave velocity: young, 3.54 ± 0.36 vs. old, 4.35 ± 0.28 m/s, P < 0.002) and diastolic (end diastolic pressure-volume relations: 3.28 ± 0.5 vs. 4.95 ± 1.5 mmHg/ml, P < 0.05) and systolic (end systolic pressure-volume relations: 20.56 ± 4.2 vs. 33.14 ± 8.4 mmHg/ml, P < 0.01) myocardial elastances in old rabbits. Electrophysiological and optical mapping studies revealed age-related slowing of ventricular and His-Purkinje conduction (His-to-ventricle interval: 23 ± 2.5 vs. 31.9 ± 2.9 ms, P < 0.0001), altered conduction anisotropy, and a greater inducibility of ventricular fibrillation (VF, 3/12 vs. 7/9, P < 0.05) in old rabbits. Histochemical studies confirmed an aging-related increased fibrosis in the ventricles. MRI showed a deterioration of the free-running Purkinje fiber network in ventricular and septal walls in old hearts as well as aging-related alterations of the myofibrillar orientation and myocardial sheet structure that may account for this slowed conduction velocity. Aging leads to parallel stiffening of the aorta and the heart, including an increase in systolic stiffness and contractility and diastolic stiffness. Increasingly, anisotropic conduction velocity due to fibrosis and altered myofibrillar orientation and myocardial sheet structure may contribute to the pathogenesis of VF in old hearts. The aging rabbit model represents a useful tool for elucidating age-related changes that predispose the aging heart to arrhythmias and SCD.
Journal of Cardiovascular Pharmacology | 2011
Bo Hjorth Bentzen; Sophia Bahrke; Kezhong Wu; Anders Peter Larsen; Katja E. Odening; Gerlind Franke; Karin Storm van´s Gravesande; Jürgen Biermann; Xuwen Peng; Gideon Koren; Manfred Zehender; Christoph Bode; Morten Grunnet; Michael Brunner
Transgenic rabbits expressing pore mutants of KV7.1 display a long QT syndrome 1 (LQT1) phenotype. Recently, NS1643 has been described to increase IKr. We hypothesized that NS1643 would shorten the action potential duration (APD90) in LQT1 rabbits. Transgenic LQT1 rabbits were compared with littermate control (LMC) rabbits. In vivo electrocardiogram studies in sedated animals were performed at baseline and during 45 minutes of intravenous infusion of NS1643 or vehicle in a crossover design. Ex vivo monophasic action potentials were recorded from Langendorff-perfused hearts at baseline and during 45-minute perfusion with NS1643. Left ventricular refractory periods were assessed before and after NS1643 infusion. Genotype differences in APD accommodation were also addressed. In vivo NS1643 shortened the QTc significantly in LQT1 compared with vehicle. In Langendorff experiments, NS1643 significantly shortened the APD90 in LQT1 and LMC [32.0 ± 4.3 milliseconds (ms); 21.0 ± 5.0 ms] and left ventricular refractory periods (23.7 ± 8.3; 22.6 ± 9.9 ms). NS1643 significantly decreased dp/dt (LQT1: 49% ± 3%; LMC: 63% ± 4%) and increased the incidence of arrhythmia. The time course of APD adaptation was impaired in LQT1 rabbits and unaffected by IKr augmentation. In conclusion, KV11.1 channel activation shortens the cardiac APD in a rabbit model of inherited LQT1, but it comes with the risk of excessive shortening of APD.
British Journal of Pharmacology | 2016
Péter Major; István Baczkó; László Hiripi; Katja E. Odening; Viktor Juhász; Zsófia Kohajda; András Horváth; György Seprényi; Mária Kovács; László Virág; Norbert Jost; János Prorok; Balázs Ördög; Zoltán Doleschall; Stanley Nattel; András Varró; Zsuzsanna Bősze
The reliable assessment of proarrhythmic risk of compounds under development remains an elusive goal. Current safety guidelines focus on the effects of blocking the KCNH2/HERG ion channel‐in tissues and animals with intact repolarization. Novel models with better predictive value are needed that more closely reflect the conditions in patients with cardiac remodelling and reduced repolarization reserve.