Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Katja Hoschler is active.

Publication


Featured researches published by Katja Hoschler.


The Lancet | 2010

Incidence of 2009 pandemic influenza A H1N1 infection in England: a cross-sectional serological study

Elizabeth Miller; Katja Hoschler; Pia Hardelid; Elaine Stanford; Nick Andrews; Maria Zambon

BACKGROUND Knowledge of the age-specific prevalence of immunity from, and incidence of infection with, 2009 pandemic influenza A H1N1 virus is essential for modelling the future burden of disease and the effectiveness of interventions such as vaccination. METHODS In this cross-sectional serological survey, we obtained 1403 serum samples taken in 2008 (before the first wave of H1N1 infection) and 1954 serum samples taken in August and September, 2009 (after the first wave of infection) as part of the annual collection for the Health Protection Agency seroepidemiology programme from patients accessing health care in England. Antibody titres were measured by use of haemagglutination inhibition and microneutralisation assays. We calculated the proportion of samples with antibodies to pandemic H1N1 virus in 2008 by age group and compared the proportion of samples with haemagglutination inhibition titre 1:32 or more (deemed a protective response) before the first wave of infection with the proportion after the first wave. FINDINGS In the baseline serum samples from 2008, haemagglutination inhibition and microneutralisation antibody titres increased significantly with age (F test p<0.0001). The proportion of samples with haemagglutination inhibition titre 1:32 or more ranged from 1.8% (three of 171; 95% CI 0.6-5.0) in children aged 0-4 years to 31.3% (52 of 166; 24.8-38.7) in adults aged 80 years or older. In London and the West Midlands, the difference in the proportion of samples with haemagglutination inhibition titre equal to or above 1:32 between baseline and September, 2009, was 21.3% (95% CI 8.8-40.3) for children younger than 5 years of age, 42.0% (26.3-58.2) for 5-14-year-olds, and 20.6% (1.6-42.4) for 15-24-year-olds, with no difference between baseline and September in older age groups. In other regions, only children younger than 15 years showed a significant increase from baseline (6.3%, 1.8-12.9). INTERPRETATION Around one child in every three was infected with 2009 pandemic H1N1 in the first wave of infection in regions with a high incidence, ten times more than estimated from clinical surveillance. Pre-existing antibody in older age groups protects against infection. Children have an important role in transmission of influenza and would be a key target group for vaccination both for their protection and for the protection of others through herd immunity. FUNDING National Institute for Health Research Health Technology Assessment Programme.


The Lancet | 2006

Safety and immunogenicity of an inactivated split-virion influenza A/Vietnam/1194/2004 (H5N1) vaccine: phase I randomised trial

Jean-Louis Bresson; Christian Perronne; Odile Launay; Catherine Gerdil; Melanie Saville; John Wood; Katja Hoschler; Maria Zambon

BACKGROUND Pathogenic avian influenza A virus H5N1 has caused outbreaks in poultry and migratory birds in Asia, Africa, and Europe, and caused disease and death in people. Although person-to-person spread of current H5N1 strains is unlikely, the virus is a potential source of a future influenza pandemic. Our aim was to assess the safety and immunogenicity of a vaccine against the H5N1 strain. METHODS We did a randomised, open-label, non-controlled phase I trial in 300 volunteers aged 18-40 years and assigned one of six inactivated split influenza A/Vietnam/1194/2004 (H5N1) influenza vaccine formulations, comprising 7.5 microg (with adjuvant n=50, without adjuvant n=49), 15 microg (n=50, n=50), or 30 microg (n=51, n=50) of haemagglutinin with or without aluminium hydroxide adjuvant. Individuals received two vaccinations (on days 0 and 21) and provided blood samples (on days 0, 21, and 42) for analysis by haemagglutination inhibition and microneutralisation. We recorded all adverse events. Analyses were descriptive. FINDINGS All formulations were well tolerated, with no serious adverse events, few severe reactions, and no oral temperatures of more than 38 degrees C. All formulations induced an immune response, and responses were detectable in some individuals after only one dose. The adjuvanted 30 microg formulation induced the greatest response (67% haemagglutinin-inhibition seroconversion rate after two vaccinations). Adjuvant did not improve the response to the lower doses. Two vaccinations of non-adjuvanted 7.5 microg, adjuvanted 15 microg, or non-adjuvanted 15 microg seroconverted more than 40% of participants (haemagglutinin-inhibition test only). Haemagglutinin inhibition and neutralising results were comparable. INTERPRETATION A two-dose regimen with an adjuvanted 30 microg inactivated H5N1 vaccine was safe and showed an immune response consistent with European regulatory requirements for licensure of seasonal influenza vaccine. We noted encouraging responses with lower doses of antigen that need further study to ascertain their relevance for the choice of the final pandemic vaccine.


The New England Journal of Medicine | 2009

Trial of 2009 Influenza A (H1N1) Monovalent MF59-Adjuvanted Vaccine

Tristan W. Clark; Manish Pareek; Katja Hoschler; Helen Dillon; Karl G. Nicholson; Nicola Groth; Iain Stephenson

BACKGROUND The 2009 pandemic influenza A (H1N1) virus has emerged to cause the first pandemic of the 21st century. Development of effective vaccines is a public health priority. METHODS We conducted a single-center study, involving 176 adults, 18 to 50 years of age, to test the monovalent influenza A/California/2009 (H1N1) surface-antigen vaccine, in both MF59-adjuvanted and nonadjuvanted forms. Subjects were randomly assigned to receive two intramuscular injections of vaccine containing 7.5 microg of hemagglutinin on day 0 in each arm or one injection on day 0 and the other on day 7, 14, or 21; or two 3.75-microg doses of MF59-adjuvanted vaccine, or 7.5 or 15 microg of nonadjuvanted vaccine, administered 21 days apart. Antibody responses were measured by means of hemagglutination-inhibition assay and a microneutralization assay on days 0, 14, 21, and 42 after injection of the first dose. RESULTS The most frequent local and systemic reactions were pain at the injection site and muscle aches, noted in 70% and 42% of subjects, respectively; reactions were more common with the MF59-adjuvanted vaccine than with nonadjuvanted vaccine. Three subjects reported fever, with a temperature of 38 degrees C or higher, after either dose. Antibody titers, expressed as geometric means, were higher at day 21 among subjects who had received one dose of MF59-adjuvanted vaccine than among those who had received one dose of nonadjuvanted vaccine (P<0.001 by the microneutralization assay). By day 21, hemagglutination-inhibition and microneutralization antibody titers of 1:40 or more were seen in 77 to 96% and 92 to 100% of subjects receiving MF59-adjuvanted vaccine, respectively, and in 63 to 72% and 67 to 76% of those receiving nonadjuvanted vaccine, respectively. By day 42, after two doses of vaccine, hemagglutination-inhibition and microneutralization antibody titers of 1:40 or more were seen in 92 to 100% and 100% of recipients of MF59-adjuvanted vaccine, respectively, and in 74 to 79% and 78 to 83% of recipients of nonadjuvanted vaccine, respectively. CONCLUSIONS Monovalent 2009 influenza A (H1N1) MF59-adjuvanted vaccine generates antibody responses likely to be associated with protection after a single dose is administered. (ClinicalTrials.gov number, NCT00943358).


Nature Medicine | 2013

Cellular immune correlates of protection against symptomatic pandemic influenza

Saranya Sridhar; Shaima Begom; Alison Bermingham; Katja Hoschler; Walt Adamson; William F. Carman; Thomas Bean; Wendy S. Barclay; Jonathan J Deeks; Ajit Lalvani

The role of T cells in mediating heterosubtypic protection against natural influenza illness in humans is uncertain. The 2009 H1N1 pandemic (pH1N1) provided a unique natural experiment to determine whether crossreactive cellular immunity limits symptomatic illness in antibody-naive individuals. We followed 342 healthy adults through the UK pandemic waves and correlated the responses of pre-existing T cells to the pH1N1 virus and conserved core protein epitopes with clinical outcomes after incident pH1N1 infection. Higher frequencies of pre-existing T cells to conserved CD8 epitopes were found in individuals who developed less severe illness, with total symptom score having the strongest inverse correlation with the frequency of interferon-γ (IFN-γ)+ interleukin-2 (IL-2)− CD8+ T cells (r = −0.6, P = 0.004). Within this functional CD8+IFN-γ+IL-2− population, cells with the CD45RA+ chemokine (C-C) receptor 7 (CCR7)− phenotype inversely correlated with symptom score and had lung-homing and cytotoxic potential. In the absence of crossreactive neutralizing antibodies, CD8+ T cells specific to conserved viral epitopes correlated with crossprotection against symptomatic influenza. This protective immune correlate could guide universal influenza vaccine development.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Fast rise of broadly cross-reactive antibodies after boosting long-lived human memory B cells primed by an MF59 adjuvanted prepandemic vaccine

Grazia Galli; Kathy Hancock; Katja Hoschler; Joshua DeVos; Michaela Praus; Monia Bardelli; Carmine Malzone; Flora Castellino; C. Gentile; Teresa McNally; Guiseppe Del Giudice; Angelika Banzhoff; Volker Brauer; Emanuele Montomoli; Maria Zambon; Jacqueline M. Katz; Karl G. Nicholson; Iain Stephenson

Proactive priming before the next pandemic could induce immune memory responses to novel influenza antigens. In an open-label study, we analyzed B cell memory and antibody responses of 54 adults who received 2 7.5-μg doses of MF59-adjuvanted A/Vietnam/1194/2004 clade 1 (H5N1) vaccine. Twenty-four subjects had been previously primed with MF59-adjuvanted or plain clade 0-like A/duck/Singapore/1997 (H5N3) vaccine during 1999–2001. The prevaccination frequency of circulating memory B cells reactive to A/Vietnam/1194/2004 was low in both primed and unprimed individuals. However, at day 21 after boosting, MF59-adjuvanted primed subjects displayed a higher frequency of H5N1-specific memory B cells than plain-primed or unprimed subjects. The immune memory was rapidly mobilized by a single vaccine administration and resulted in high titers of neutralizing antibodies to antigenically diverse clade 0, 1, and 2 H5N1 viruses already at day 7. In general, postvaccination antibody titers were significantly higher in primed subjects than in unprimed subjects. Subjects primed with MF59-adjuvanted vaccine responded significantly better than those primed with plain vaccine, most notably in early induction and duration of cross-reacting antibody responses. After 6 months, high titers of cross-reactive antibody remained detectable among MF59-primed subjects. We conclude that distant priming with clade 0-like H5N3 induces a pool of cross-reactive memory B cells that can be boosted rapidly years afterward by a mismatched MF59-adjuvanted vaccine to generate high titers of cross-reactive neutralizing antibodies rapidly. These results suggest that pre-pandemic vaccination strategies should be considered.


BMJ | 2010

Safety and immunogenicity of AS03B adjuvanted split virion versus non-adjuvanted whole virion H1N1 influenza vaccine in UK children aged 6 months-12 years: open label, randomised, parallel group, multicentre study.

Claire S. Waddington; Woolf T. Walker; Clarissa Oeser; A Reiner; Tessa M. John; S Wilkins; Michelle Casey; P Eccleston; Ruth J. Allen; Ifeanyichukwu O. Okike; Shamez Ladhani; Elizabeth Sheasby; Katja Hoschler; Nick Andrews; Pauline Waight; Andrew Collinson; Paul T. Heath; Adam Finn; Saul N. Faust; Matthew D. Snape; Elizabeth Miller; Andrew J. Pollard

Objectives To compare the safety, reactogenicity, and immunogenicity of an adjuvanted split virion H1N1 vaccine and a non-adjuvanted whole virion vaccine used in the pandemic immunisation programme in the United Kingdom. Design Open label, randomised, parallel group, phase II study. Setting Five UK centres (Oxford, Southampton, Bristol, Exeter, and London). Participants Children aged 6 months to less than 13 years for whom a parent or guardian had provided written informed consent and who were able to comply with study procedures were eligible. Those with laboratory confirmed pandemic H1N1 influenza or clinically diagnosed disease meriting antiviral treatment, allergy to egg or any other vaccine components, or coagulation defects, or who were severely immunocompromised or had recently received blood products were excluded. Children were grouped by age: 6 months-<3 years (younger group) and 3-<13 years (older group). Recruitment was by media advertising and direct mailing. Recruitment visits were attended by 949 participants, of whom 943 were enrolled and 937 included in the per protocol analysis. Interventions Participants were randomised 1:1 to receive AS03B (tocopherol based oil in water emulsion) adjuvanted split virion vaccine derived from egg culture or non-adjuvanted whole virion vaccine derived from cell culture. Both were given as two doses 21 days apart. Reactogenicity data were collected for one week after immunisation by diary card. Serum samples were collected at baseline and after the second dose. Main outcome measures Primary reactogenicity end points were frequency and severity of fever, tenderness, swelling, and erythema after vaccination. Immunogenicity was measured by microneutralisation and haemagglutination inhibition assays. The primary immunogenicity objective was a comparison between vaccines of the percentage of participants showing seroconversion by the microneutralisation assay (fourfold rise to a titre of ≥1:40 from before vaccination to three weeks after the second dose). Results Seroconversion rates were higher after the adjuvanted split virion vaccine than after the whole virion vaccine, most notably in the youngest children (163 of 166 participants with paired serum samples (98.2%, 95% confidence interval 94.8% to 99.6%) v 157 of 196 (80.1%, 73.8% to 85.5%), P<0.001) in children under 3 years and 226 of 228 (99.1%, 96.9% to 99.9%) v 95.9%, 92.4% to 98.1%, P=0.03) in those over 3 years). The adjuvanted split virion vaccine was more reactogenic than the whole virion vaccine, with more frequent systemic reactions and severe local reactions in children aged over 5 years after dose one (13 (7.2%, 3.9% to 12%) v 2 (1.1%, 0.1% to 3.9%), P<0.001) and dose two (15 (8.5%, 4.8% to 13.7%) v 2 (1.1%, 0.1% to 4.1%), P<0.002) and after dose two in those under 5 years (15 (5.9%, 3.3% to 9.6%) v 0 (0.0%, 0% to 1.4%), P<0.001). Dose two of the adjuvanted split virion vaccine was more reactogenic than dose one, especially for fever ≥38ºC in those aged under 5 (24 (8.9%, 5.8% to 12.9%) v 57 (22.4%, 17.5% to 28.1%), P<0.001). Conclusions In this first direct comparison of an AS03B adjuvanted split virion versus whole virion non-adjuvanted H1N1 vaccine, the adjuvanted vaccine, while more reactogenic, was more immunogenic and, importantly, achieved high seroconversion rates in children aged less than 3 years. This indicates the potential for improved immunogenicity of influenza vaccines in this age group. Trial registration Clinical trials.gov NCT00980850; ISRCTN89141709.


Vaccine | 2009

A phase I clinical trial of a PER.C6 cell grown influenza H7 virus vaccine.

Rebecca Jane Cox; Abdullah S. Madhun; Solveig Hauge; Haakon Sjursen; Diane Major; Mirjam Kuhne; Katja Hoschler; Melanie Saville; Frederick R. Vogel; Wendy S. Barclay; Isabella Donatelli; Maria Zambon; John Wood; Lars R. Haaheim

Avian influenza H7 viruses have transmitted from poultry to man causing human illness and fatality, highlighting the need for pandemic preparedness against this subtype. We have developed and tested the first cell-based human vaccine against H7 avian influenza virus in a phase I clinical trial. Sixty healthy volunteers were intramuscularly vaccinated with two doses of split H7N1 virus vaccine containing 12 microg or 24 microg haemagglutinin alone or with aluminium hydroxide adjuvant (300 microg or 600 microg, respectively). The vaccine was well tolerated in all subjects and no serious adverse events occurred. The vaccine elicited low haemagglutination inhibition and microneutralisation titres, although the addition of aluminium adjuvant augmented the antibody response. We found a higher number of antibody secreting cells and an association with IL-2 production in subjects with antibody response. In conclusion, our study shows that producing effective H7 pandemic vaccines is as challenging as has been observed for H5 vaccines.


Emerging Infectious Diseases | 2009

Reproducibility of Serologic Assays for Influenza Virus A (H5N1)

Iain Stephenson; Alan Heath; Diane Major; Robert Newman; Katja Hoschler; Wang Junzi; Jacqueline M. Katz; Jerry P. Weir; Maria Zambon; John Wood

Results for clade 1 viruses were more consistent among laboratories when a standard antibody was used.


The New England Journal of Medicine | 2008

Antigenically Distinct MF59-Adjuvanted Vaccine to Boost Immunity to H5N1

Iain Stephenson; Karl G. Nicholson; Katja Hoschler; Maria Zambon; Kathy Hancock; Joshua DeVos; Jacqueline M. Katz; Michaela Praus; Angelika Banzhoff

The authors report on an open-label study of an MF59-adjuvanted vaccine against avian influenza. The findings indicate that priming subjects with H5 antigen induces a rapidly mobilized, long-lasting immune memory after the administration of low-dose, antigenically distinct vaccine.


Influenza and Other Respiratory Viruses | 2007

A sensitive retroviral pseudotype assay for influenza H5N1-neutralizing antibodies

Nigel J. Temperton; Katja Hoschler; Diane Major; Carolyn Nicolson; R. J. Manvell; Vo Minh Hien; Do Quang Ha; Menno De Jong; Maria Zambon; Yasuhiro Takeuchi; Robin A. Weiss

Background  The World Health Organisation (WHO) recommended the development of simple, safe, sensitive and specific neutralization assays for avian influenza antibodies. We have used retroviral pseudotypes bearing influenza H5 hemagglutinin (HA) as safe, surrogate viruses for influenza neutralization assays which can be carried out at Biosafety Level 2.

Collaboration


Dive into the Katja Hoschler's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nick Andrews

Health Protection Agency

View shared research outputs
Top Co-Authors

Avatar

John Wood

National Institute for Biological Standards and Control

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jacqueline M. Katz

National Center for Immunization and Respiratory Diseases

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Atul Humar

University Health Network

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Iain Stephenson

Leicester Royal Infirmary

View shared research outputs
Researchain Logo
Decentralizing Knowledge