Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Katja Klumpp is active.

Publication


Featured researches published by Katja Klumpp.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Global and time-resolved monitoring of crop photosynthesis with chlorophyll fluorescence.

Luis Guanter; Yongguang Zhang; Martin Jung; Joanna Joiner; Maximillian Voigt; Joseph A. Berry; Christian Frankenberg; Alfredo R. Huete; Pablo J. Zarco-Tejada; Jung-Eun Lee; M. Susan Moran; Guillermo E. Ponce-Campos; Christian Beer; Gustavo Camps-Valls; Nina Buchmann; Damiano Gianelle; Katja Klumpp; Alessandro Cescatti; John M. Baker; Timothy J. Griffis

Significance Global food and biofuel production and their vulnerability in a changing climate are of paramount societal importance. However, current global model predictions of crop photosynthesis are highly uncertain. Here we demonstrate that new space-based observations of chlorophyll fluorescence, an emission intrinsically linked to plant biochemistry, enable an accurate, global, and time-resolved measurement of crop photosynthesis, which is not possible from any other remote vegetation measurement. Our results show that chlorophyll fluorescence data can be used as a unique benchmark to improve our global models, thus providing more reliable projections of agricultural productivity and climate impact on crop yields. The enormous increase of the observational capabilities for fluorescence in the very near future strengthens the relevance of this study. Photosynthesis is the process by which plants harvest sunlight to produce sugars from carbon dioxide and water. It is the primary source of energy for all life on Earth; hence it is important to understand how this process responds to climate change and human impact. However, model-based estimates of gross primary production (GPP, output from photosynthesis) are highly uncertain, in particular over heavily managed agricultural areas. Recent advances in spectroscopy enable the space-based monitoring of sun-induced chlorophyll fluorescence (SIF) from terrestrial plants. Here we demonstrate that spaceborne SIF retrievals provide a direct measure of the GPP of cropland and grassland ecosystems. Such a strong link with crop photosynthesis is not evident for traditional remotely sensed vegetation indices, nor for more complex carbon cycle models. We use SIF observations to provide a global perspective on agricultural productivity. Our SIF-based crop GPP estimates are 50–75% higher than results from state-of-the-art carbon cycle models over, for example, the US Corn Belt and the Indo-Gangetic Plain, implying that current models severely underestimate the role of management. Our results indicate that SIF data can help us improve our global models for more accurate projections of agricultural productivity and climate impact on crop yields. Extension of our approach to other ecosystems, along with increased observational capabilities for SIF in the near future, holds the prospect of reducing uncertainties in the modeling of the current and future carbon cycle.


Nature Climate Change | 2014

Land management and land-cover change have impacts of similar magnitude on surface temperature

Sebastiaan Luyssaert; Mathilde Jammet; Paul C. Stoy; Stephen Estel; Julia Pongratz; Eric Ceschia; Galina Churkina; Axel Don; Karl-Heinz Erb; Morgan Ferlicoq; Bert Gielen; Thomas Grünwald; R. A. Houghton; Katja Klumpp; Alexander Knohl; Thomas E. Kolb; Tobias Kuemmerle; Tuomas Laurila; Annalea Lohila; Denis Loustau; Matthew J. McGrath; Patrick Meyfroidt; E.J. Moors; Kim Naudts; Kim Novick; Juliane Otto; Kim Pilegaard; Casimiro Pio; Serge Rambal; Corinna Rebmann

The direct effects of land-cover change on surface climate are increasingly well understood, but fewer studies have investigated the consequences of the trend towards more intensive land management practices. Now, research investigating the biophysical effects of temperate land-management changes reveals a net warming effect of similar magnitude to that driven by changing land cover.


The ISME Journal | 2008

Effects of aboveground grazing on coupling among nitrifier activity, abundance and community structure

Xavier Le Roux; Franck Poly; Pauline Currey; Claire Commeaux; Brigitte Hai; Graeme W. Nicol; James I. Prosser; Michael Schloter; E. Attard; Katja Klumpp

The influence of switches in grassland management to or from grazing on the dynamics of nitrifier activity, as well as the abundance of ammonia-oxidizing bacteria, AOB and ammonia-oxidizing archeae, AOA, was analyzed for two years after changing management. Additionally community structure of AOB was surveyed. Four treatments were compared in mesocosms: grazing on previously grazed grassland (G-G); no grazing on ungrazed grassland (U-U); grazing on ungrazed grassland (U-G) and cessation of grazing on grazed grassland (G-U). Nitrifier activity and abundance were always higher for G-G than U-U treatments and AOB community structure differed between these treatments. AOA abundance was in the same range as AOB abundance and followed the same trend. Grazing led to a change in AOB community structure within <5 months and a subsequent (5–12 months) increase in nitrifier activity and abundance. In contrast, cessation of grazing led to a decrease in nitrifier activity and abundance within <5 months and to a later (5–12 months) change in AOB community structure. Activity in G-U and U-G was similar to that in U-U and G-G, respectively, after 12 months. Sequence analysis of 16S rRNA gene clones showed that AOB retrieved from soils fell within the Nitrosospira lineage and percentages of AOB related to known Nitrosospira groups were affected by grazing. These results demonstrate that AOB and AOA respond quickly to changes in management. The selection of nitrifiers adapted to novel environmental conditions was a prerequisite for nitrification enhancement in U-G, whereas nitrification decrease in G-U was likely due to a partial starvation and decrease in the abundance of nitrifiers initially present. The results also suggest that taxonomic affiliation does not fully infer functional traits of AOB.


Sensors | 2011

Ground-Based Optical Measurements at European Flux Sites: A Review of Methods, Instruments and Current Controversies

Manuela Balzarolo; Karen Anderson; Caroline J. Nichol; Micol Rossini; L. Vescovo; Nicola Arriga; Georg Wohlfahrt; Jean-Christophe Calvet; Arnaud Carrara; Sofia Cerasoli; Sergio Cogliati; Fabrice Daumard; Lars Eklundh; J.A. Elbers; Fatih Evrendilek; R.N. Handcock; Jörg Kaduk; Katja Klumpp; Bernard Longdoz; Giorgio Matteucci; Michele Meroni; Leonardo Montagnani; Jean-Marc Ourcival; Enrique P. Sánchez-Cañete; Jean-Yves Pontailler; Radosław Juszczak; Bob Scholes; M. Pilar Martín

This paper reviews the currently available optical sensors, their limitations and opportunities for deployment at Eddy Covariance (EC) sites in Europe. This review is based on the results obtained from an online survey designed and disseminated by the Co-cooperation in Science and Technology (COST) Action ESO903—“Spectral Sampling Tools for Vegetation Biophysical Parameters and Flux Measurements in Europe” that provided a complete view on spectral sampling activities carried out within the different research teams in European countries. The results have highlighted that a wide variety of optical sensors are in use at flux sites across Europe, and responses further demonstrated that users were not always fully aware of the key issues underpinning repeatability and the reproducibility of their spectral measurements. The key findings of this survey point towards the need for greater awareness of the need for standardisation and development of a common protocol of optical sampling at the European EC sites.


Global Change Biology | 2014

Priming effect and microbial diversity in ecosystem functioning and response to global change: a modeling approach using the SYMPHONY model.

Nazia Perveen; Sébastien Barot; Gaël Alvarez; Katja Klumpp; Raphaël Martin; Alain Rapaport; Damien Herfurth; Frédérique Louault; Sébastien Fontaine

Integration of the priming effect (PE) in ecosystem models is crucial to better predict the consequences of global change on ecosystem carbon (C) dynamics and its feedbacks on climate. Over the last decade, many attempts have been made to model PE in soil. However, PE has not yet been incorporated into any ecosystem models. Here, we build plant/soil models to explore how PE and microbial diversity influence soil/plant interactions and ecosystem C and nitrogen (N) dynamics in response to global change (elevated CO2 and atmospheric N depositions). Our results show that plant persistence, soil organic matter (SOM) accumulation, and low N leaching in undisturbed ecosystems relies on a fine adjustment of microbial N mineralization to plant N uptake. This adjustment can be modeled in the SYMPHONY model by considering the destruction of SOM through PE, and the interactions between two microbial functional groups: SOM decomposers and SOM builders. After estimation of parameters, SYMPHONY provided realistic predictions on forage production, soil C storage and N leaching for a permanent grassland. Consistent with recent observations, SYMPHONY predicted a CO2 -induced modification of soil microbial communities leading to an intensification of SOM mineralization and a decrease in the soil C stock. SYMPHONY also indicated that atmospheric N deposition may promote SOM accumulation via changes in the structure and metabolic activities of microbial communities. Collectively, these results suggest that the PE and functional role of microbial diversity may be incorporated in ecosystem models with a few additional parameters, improving accuracy of predictions.


Agronomy for Sustainable Development | 2017

Increasing soil carbon storage: mechanisms, effects of agricultural practices and proxies. A review

Marie-France Dignac; Delphine Derrien; Pierre Barré; Sébastien Barot; Lauric Cécillon; Claire Chenu; Tiphaine Chevallier; Grégoire T. Freschet; Patricia Garnier; Bertrand Guenet; Mickaël Hedde; Katja Klumpp; Gwenaëlle Lashermes; Pierre-Alain Maron; Naoise Nunan; Catherine Roumet; Isabelle Basile-Doelsch

The international 4 per 1000 initiative aims at supporting states and non-governmental stakeholders in their efforts towards a better management of soil carbon (C) stocks. These stocks depend on soil C inputs and outputs. They are the result of fine spatial scale interconnected mechanisms, which stabilise/destabilise organic matter-borne C. Since 2016, the CarboSMS consortium federates French researchers working on these mechanisms and their effects on C stocks in a local and global change setting (land use, agricultural practices, climatic and soil conditions, etc.). This article is a synthesis of this consortium’s first seminar. In the first part, we present recent advances in the understanding of soil C stabilisation mechanisms comprising biotic and abiotic processes, which occur concomitantly and interact. Soil organic C stocks are altered by biotic activities of plants (the main source of C through litter and root systems), microorganisms (fungi and bacteria) and ‘ecosystem engineers’ (earthworms, termites, ants). In the meantime, abiotic processes related to the soil-physical structure, porosity and mineral fraction also modify these stocks. In the second part, we show how agricultural practices affect soil C stocks. By acting on both biotic and abiotic mechanisms, land use and management practices (choice of plant species and density, plant residue exports, amendments, fertilisation, tillage, etc.) drive soil spatiotemporal organic inputs and organic matter sensitivity to mineralisation. Interaction between the different mechanisms and their effects on C stocks are revealed by meta-analyses and long-term field studies. The third part addresses upscaling issues. This is a cause for major concern since soil organic C stabilisation mechanisms are most often studied at fine spatial scales (mm–μm) under controlled conditions, while agricultural practices are implemented at the plot scale. We discuss some proxies and models describing specific mechanisms and their action in different soil and climatic contexts and show how they should be taken into account in large scale models, to improve change predictions in soil C stocks. Finally, this literature review highlights some future research prospects geared towards preserving or even increasing C stocks, our focus being put on the mechanisms, the effects of agricultural practices on them and C stock prediction models.


Environmental Modelling and Software | 2015

Regional-scale analysis of carbon and water cycles on managed grassland systems

Shaoxiu Ma; Romain Lardy; Anne-Isabelle Graux; Haythem Ben Touhami; Katja Klumpp; Raphaël Martin; Gianni Bellocchi

Predicting regional and global carbon (C) and water dynamics on grasslands has become of major interest, as grasslands are one of the most widespread vegetation types worldwide, providing a number of ecosystem services (such as forage production and C storage). The present study is a contribution to a regional-scale analysis of the C and water cycles on managed grasslands. The mechanistic biogeochemical model PaSim (Pasture Simulation model) was evaluated at 12 grassland sites in Europe. A new parameterization was obtained on a common set of eco-physiological parameters, which represented an improvement of previous parameterization schemes (essentially obtained via calibration at specific sites). We found that C and water fluxes estimated with the parameter set are in good agreement with observations. The model with the new parameters estimated that European grassland are a sink of C with 213?g?C?m-2?yr-1, which is close to the observed net ecosystem exchange (NEE) flux of the studied sites (185?g?C?m-2?yr-1 on average). The estimated yearly average gross primary productivity (GPP) and ecosystem respiration (RECO) for all of the study sites are 1220 and 1006?g?C?m-2?yr-1, respectively, in agreement with observed average GPP (1230?g?C?m-2?yr-1) and RECO (1046?g?C?m-2?yr-1). For both variables aggregated on a weekly basis, the root mean square error (RMSE) was ~5-16?g?C?week-1 across the study sites, while the goodness of fit (R2) was ~0.4-0.9. For evapotranspiration (ET), the average value of simulated ET (415?mm?yr-1) for all sites and years is close to the average value of the observed ET (451?mm?yr-1) by flux towers (on a weekly basis, RMSE~2-8?mm?week-1; R2?=?0.3-0.9). However, further model development is needed to better represent soil water dynamics under dry conditions and soil temperature in winter. A quantification of the uncertainties introduced by spatially generalized parameter values in C and water exchange estimates is also necessary. In addition, some uncertainties in the input management data call for the need to improve the quality of the observational system. A mechanistic biogeochemical pasture simulation model (PaSim) is improved by using a common set of eco-physiological parameters.PaSim was evaluated at 12 grassland sites in Europe, performing regional-scale analysis of carbon and water cycles.PaSim estimated that European grasslands are a carbon sink of 213?g?C?m-2?yr-1.PaSim overestimated the soil water content during dry periods.


Science of The Total Environment | 2017

Review and analysis of strengths and weaknesses of agro-ecosystem models for simulating C and N fluxes

Lorenzo Brilli; Luca Bechini; Marco Bindi; Marco Carozzi; Daniele Cavalli; Richard T. Conant; C. Dorich; Luca Doro; Fiona Ehrhardt; Roberta Farina; Roberto Ferrise; Nuala Fitton; Rosa Francaviglia; Peter Grace; Ileana Iocola; Katja Klumpp; Joël Léonard; Raphaël Martin; Raia Silvia Massad; Sylvie Recous; Giovanna Seddaiu; Joanna Sharp; Pete Smith; Ward N. Smith; Jean-François Soussana; Gianni Bellocchi

Biogeochemical simulation models are important tools for describing and quantifying the contribution of agricultural systems to C sequestration and GHG source/sink status. The abundance of simulation tools developed over recent decades, however, creates a difficulty because predictions from different models show large variability. Discrepancies between the conclusions of different modelling studies are often ascribed to differences in the physical and biogeochemical processes incorporated in equations of C and N cycles and their interactions. Here we review the literature to determine the state-of-the-art in modelling agricultural (crop and grassland) systems. In order to carry out this study, we selected the range of biogeochemical models used by the CN-MIP consortium of FACCE-JPI (http://www.faccejpi.com): APSIM, CERES-EGC, DayCent, DNDC, DSSAT, EPIC, PaSim, RothC and STICS. In our analysis, these models were assessed for the quality and comprehensiveness of underlying processes related to pedo-climatic conditions and management practices, but also with respect to time and space of application, and for their accuracy in multiple contexts. Overall, it emerged that there is a possible impact of ill-defined pedo-climatic conditions in the unsatisfactory performance of the models (46.2%), followed by limitations in the algorithms simulating the effects of management practices (33.1%). The multiplicity of scales in both time and space is a fundamental feature, which explains the remaining weaknesses (i.e. 20.7%). Innovative aspects have been identified for future development of C and N models. They include the explicit representation of soil microbial biomass to drive soil organic matter turnover, the effect of N shortage on SOM decomposition, the improvements related to the production and consumption of gases and an adequate simulations of gas transport in soil. On these bases, the assessment of trends and gaps in the modelling approaches currently employed to represent biogeochemical cycles in crop and grassland systems appears an essential step for future research.


PLOS ONE | 2015

Modeled Changes in Potential Grassland Productivity and in Grass-Fed Ruminant Livestock Density in Europe over 1961–2010

Nicolas Viovy; Nicolas Vuichard; Philippe Ciais; Matteo Campioli; Katja Klumpp; Raphaël Martin; Adrian Leip; Jean-François Soussana

About 25% of European livestock intake is based on permanent and sown grasslands. To fulfill rising demand for animal products, an intensification of livestock production may lead to an increased consumption of crop and compound feeds. In order to preserve an economically and environmentally sustainable agriculture, a more forage based livestock alimentation may be an advantage. However, besides management, grassland productivity is highly vulnerable to climate (i.e., temperature, precipitation, CO2 concentration), and spatial information about European grassland productivity in response to climate change is scarce. The process-based vegetation model ORCHIDEE-GM, containing an explicit representation of grassland management (i.e., herbage mowing and grazing), is used here to estimate changes in potential productivity and potential grass-fed ruminant livestock density across European grasslands over the period 1961–2010. Here “potential grass-fed ruminant livestock density” denotes the maximum density of livestock that can be supported by grassland productivity in each 25 km × 25 km grid cell. In reality, livestock density could be higher than potential (e.g., if additional feed is supplied to animals) or lower (e.g., in response to economic factors, pedo-climatic and biotic conditions ignored by the model, or policy decisions that can for instance reduce livestock numbers). When compared to agricultural statistics (Eurostat and FAOstat), ORCHIDEE-GM gave a good reproduction of the regional gradients of annual grassland productivity and ruminant livestock density. The model however tends to systematically overestimate the absolute values of productivity in most regions, suggesting that most grid cells remain below their potential grassland productivity due to possible nutrient and biotic limitations on plant growth. When ORCHIDEE-GM was run for the period 1961–2010 with variable climate and rising CO2, an increase of potential annual production (over 3%) per decade was found: 97% of this increase was attributed to the rise in CO2, -3% to climate trends and 15% to trends in nitrogen fertilization and deposition. When compared with statistical data, ORCHIDEE-GM captures well the observed phase of climate-driven interannual variability in grassland production well, whereas the magnitude of the interannual variability in modeled productivity is larger than the statistical data. Regional grass-fed livestock numbers can be reproduced by ORCHIDEE-GM based on its simple assumptions and parameterization about productivity being the only limiting factor to define the sustainable number of animals per unit area. Causes for regional model-data misfits are discussed, including uncertainties in farming practices (e.g., nitrogen fertilizer application, and mowing and grazing intensity) and in ruminant diet composition, as well as uncertainties in the statistical data and in model parameter values.


Ecosystems | 2010

Determination of Aboveground Net Primary Productivity and Plant Traits in Grasslands with Near-Infrared Reflectance Spectroscopy

Rémi Pilon; Katja Klumpp; Pascal Carrère; Catherine Picon-Cochard

Proposed links between biodiversity and ecosystem processes have generated intense interest in the linkage between aboveground net primary productivity (ANPP) and soil C storage. Quantity and quality of ANPP largely depend on plant functional groups and management practices. In a context of environmental change (that is, land-use and climate) long-term studies of ANPP and functional groups are gaining interest. However, rapid determination of ANPP and functional groups are often limited in time and money, resulting in less than ideal sampling schemes and replications. Near-infrared reflectance spectroscopy (NIRS) can relieve constraints of labor intensive hand-sorting by providing quick, non-destructive, and quantitative analyses of a range of organic constituents (for example, plant tissues). Here, we investigated the potential of a NIRS method to rapidly predict harvested green aboveground biomass, the proportion of dead material, and simple functional plant traits, necessary to determine ANPP and related ecosystem properties. The issue was investigated for two independent grassland experiments of contrasted long-term field management (high vs. low grazing and N fertilization). Our results show that NIRS analyses are well suited to determine ANPP (12 and 19% error of prediction) and simple plant traits (error 9%) of contrasted treatment of two independent multi-species grasslands. Moreover, we show that calibration may be simplified when compared to commonly used protocols, which offers ecologists enormous analytical power.

Collaboration


Dive into the Katja Klumpp's collaboration.

Top Co-Authors

Avatar

Jean-François Soussana

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Raphaël Martin

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Gianni Bellocchi

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Philippe Faverdin

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Sylvie Recous

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Claire Chenu

Université Paris-Saclay

View shared research outputs
Top Co-Authors

Avatar

M. Doreau

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Marc Benoit

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Pierre Dupraz

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Sébastien Fontaine

Institut national de la recherche agronomique

View shared research outputs
Researchain Logo
Decentralizing Knowledge