Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Katrien Van Der Kelen is active.

Publication


Featured researches published by Katrien Van Der Kelen.


Proceedings of the National Academy of Sciences of the United States of America | 2003

A comprehensive analysis of hydrogen peroxide-induced gene expression in tobacco.

Steven Vandenabeele; Katrien Van Der Kelen; James F. Dat; Ilya Gadjev; Tom Boonefaes; Stijn Morsa; Pieter Rottiers; Luit Slooten; Marc Van Montagu; Marc Zabeau; Dirk Inzé; Frank Van Breusegem

Hydrogen peroxide plays a central role in launching the defense response during stress in plants. To establish a molecular profile provoked by a sustained increase in hydrogen peroxide levels, catalase-deficient tobacco plants (CAT1AS) were exposed to high light (HL) intensities over a detailed time course. The expression kinetics of >14,000 genes were monitored by using transcript profiling technology based on cDNA-amplified fragment length polymorphism. Clustering and sequence analysis of 713 differentially expressed transcript fragments revealed a transcriptional response that mimicked that reported during both biotic and abiotic stresses, including the up-regulation of genes involved in the hypersensitive response, vesicular transport, posttranscriptional processes, biosynthesis of ethylene and jasmonic acid, proteolysis, mitochondrial metabolism, and cell death, and was accompanied by a very rapid up-regulation of several signal transduction components. Expression profiling corroborated by functional experiments showed that HL induced photoinhibition in CAT1AS plants and that a short-term HL exposure of CAT1AS plants triggered an increased tolerance against a subsequent severe oxidative stress.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Energy use efficiency is characterized by an epigenetic component that can be directed through artificial selection to increase yield

Miriam Hauben; Boris Haesendonckx; Evi Standaert; Katrien Van Der Kelen; Abdelkrim Azmi; Hervé Akpo; Frank Van Breusegem; Yves Guisez; Marc Bots; Bart Lambert; Benjamin Laga; Marc De Block

Quantitative traits, such as size and weight in animals and seed yield in plants, are distributed normally, even within a population of genetically identical individuals. For example, in plants, various factors, such as local soil quality, microclimate, and sowing depth, affect growth differences among individual plants of isogenic populations. Besides these physical factors, also epigenetic components contribute to differences in growth and yield. The network that regulates crop yield is still not well understood. Although this network is expected to have epigenetic elements, it is completely unclear whether it would be possible to shape the epigenome to increase crop yield. Here we show that energy use efficiency is an important factor in determining seed yield in canola (Brassica napus) and that it can be selected artificially through an epigenetic feature. From an isogenic canola population of which the individual plants and their self-fertilized progenies were recursively selected for respiration intensity, populations with distinct physiological and agronomical characteristics could be generated. These populations were found to be genetically identical, but epigenetically different. Furthermore, both the DNA methylation patterns as well as the agronomical and physiological characteristics of the selected lines were heritable. Hybrids derived from parent lines selected for high energy use efficiencies had a 5% yield increase on top of heterosis. Our results demonstrate that artificial selection allows the increase of the yield potential by selecting populations with particular epigenomic states.


Critical Reviews in Biochemistry and Molecular Biology | 2009

Translational control of eukaryotic gene expression

Katrien Van Der Kelen; Rudi Beyaert; Dirk Inzé; Lieven De Veylder

Translational control mechanisms are, besides transcriptional control and mRNA stability, the most determining for final protein levels. A large number of accessory factors that assist the ribosome during initiation, elongation, and termination of translation are required for protein synthesis. Cap-dependent translational control occurs mainly during the initiation step, involving eukaryotic initiation factors (eIFs) and accessory proteins. Initiation is affected by various stimuli that influence the phosphorylation status of both eIF4E and eIF2 and through binding of 4E-binding proteins to eIF4E, which finally inhibits cap- dependent translation. Under conditions where cap-dependent translation is hampered, translation of transcripts containing an internal ribosome entry site can still be supported in a cap-independent manner. An interesting example of translational control is the switch between cap-independent and cap-dependent translation during the eukaryotic cell cycle. At the G1-to-S transition, translation occurs predominantly in a cap-dependent manner, while during the G2-to-M transition, cap-dependent translation is inhibited and transcripts are predominantly translated through a cap-independent mechanism.


Trends in Plant Science | 2015

Plant innate immunity – sunny side up?

Simon Stael; Przemyslaw Kmiecik; Patrick Willems; Katrien Van Der Kelen; Núria S. Coll; Markus Teige; Frank Van Breusegem

Reactive oxygen species (ROS)- and calcium- dependent signaling pathways play well-established roles during plant innate immunity. Chloroplasts host major biosynthetic pathways and have central roles in energy production, redox homeostasis, and retrograde signaling. However, the organelles importance in immunity has been somehow overlooked. Recent findings suggest that the chloroplast also has an unanticipated function as a hub for ROS- and calcium-signaling that affects immunity responses at an early stage after pathogen attack. In this opinion article, we discuss a chloroplastic calcium-ROS signaling branch of plant innate immunity. We propose that this chloroplastic branch acts as a light-dependent rheostat that, through the production of ROS, influences the severity of the immune response.


Molecular Plant | 2014

Spatial H2O2 signaling specificity: H2O2 from chloroplasts and peroxisomes modulates the plant transcriptome differentially.

Nasser Sewelam; Nils Jaspert; Katrien Van Der Kelen; Vanesa B. Tognetti; Jessica Schmitz; Henning Frerigmann; Elia Stahl; Jürgen Zeier; Frank Van Breusegem; Veronica G. Maurino

Hydrogen peroxide (H2O2) operates as a signaling molecule in eukaryotes, but the specificity of its signaling capacities remains largely unrevealed. Here, we analyzed whether a moderate production of H2O2 from two different plant cellular compartments has divergent effects on the plant transcriptome. Arabidopsis thaliana overexpressing glycolate oxidase in the chloroplast (Fahnenstich et al., 2008; Balazadeh et al., 2012) and plants deficient in peroxisomal catalase (Queval et al., 2007; Inzé et al., 2012) were grown under non-photorespiratory conditions and then transferred to photorespiratory conditions to foster the production of H2O2 in both organelles. We show that H2O2 originating in a specific organelle induces two types of responses: one that integrates signals independently from the subcellular site of H2O2 production and another that is dependent on the H2O2 production site. H2O2 produced in peroxisomes induces transcripts involved in protein repair responses, while H2O2 produced in chloroplasts induces early signaling responses, including transcription factors and biosynthetic genes involved in production of secondary signaling messengers. There is a significant bias towards the induction of genes involved in responses to wounding and pathogen attack by chloroplastic-produced H2O2, including indolic glucosinolates-, camalexin-, and stigmasterol-biosynthetic genes. These transcriptional responses were accompanied by the accumulation of 4-methoxy-indol-3-ylmethyl glucosinolate and stigmasterol.


The Plant Cell | 2013

Catalase and NO CATALASE ACTIVITY1 Promote Autophagy-Dependent Cell Death in Arabidopsis

Thomas Hackenberg; Trine Juul; Aija Auzina; Sonia Gwizdz; Anna Małolepszy; Katrien Van Der Kelen; Svend Secher Dam; Simon Bressendorff; Andrea Lorentzen; Peter Roepstorff; Kåre Lehmann Nielsen; Jan-Elo Jørgensen; Daniel Hofius; Frank Van Breusegem; Morten Petersen; Stig U. Andersen

Catalase directly interacts with and detoxifies reactive oxygen species. This work identifies catalase-deficient mutants in a screen for suppression of cell death and finds that promotion of cell death associated with the plant hypersensitive response requires catalase, suggesting that catalase could act as a direct molecular link between reactive oxygen species and cell death signaling. Programmed cell death often depends on generation of reactive oxygen species, which can be detoxified by antioxidative enzymes, including catalases. We previously isolated catalase-deficient mutants (cat2) in a screen for resistance to hydroxyurea-induced cell death. Here, we identify an Arabidopsis thaliana hydroxyurea-resistant autophagy mutant, atg2, which also shows reduced sensitivity to cell death triggered by the bacterial effector avrRpm1. To test if catalase deficiency likewise affected both hydroxyurea and avrRpm1 sensitivity, we selected mutants with extremely low catalase activities and showed that they carried mutations in a gene that we named NO CATALASE ACTIVITY1 (NCA1). nca1 mutants showed severely reduced activities of all three catalase isoforms in Arabidopsis, and loss of NCA1 function led to strong suppression of RPM1-triggered cell death. Basal and starvation-induced autophagy appeared normal in the nca1 and cat2 mutants. By contrast, autophagic degradation induced by avrRpm1 challenge was compromised, indicating that catalase acted upstream of immunity-triggered autophagy. The direct interaction of catalase with reactive oxygen species could allow catalase to act as a molecular link between reactive oxygen species and the promotion of autophagy-dependent cell death.


Plant Physiology | 2013

LESION SIMULATING DISEASE1, ENHANCED DISEASE SUSCEPTIBILITY1, and PHYTOALEXIN DEFICIENT4 conditionally regulate cellular signaling homeostasis, photosynthesis, water use efficiency, and seed yield in Arabidopsis

Weronika Wituszyńska; Ireneusz Ślesak; Sandy Vanderauwera; Magdalena Szechyńska-Hebda; Andrzej Kornaś; Katrien Van Der Kelen; Per Mühlenbock; Barbara Karpińska; Sebastian Mackowski; Frank Van Breusegem; Stanislaw Karpinski

Gene functions should be studied not only under stable laboratory conditions, but also in the environment abounding in multiple stresses. There is growing evidence that for a comprehensive insight into the function of plant genes, it is crucial to assess their functionalities under a wide range of conditions. In this study, we examined the role of LESION SIMULATING DISEASE1 (LSD1), ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1), and PHYTOALEXIN DEFICIENT4 (PAD4) in the regulation of photosynthesis, water use efficiency, reactive oxygen species/hormonal homeostasis, and seed yield in Arabidopsis (Arabidopsis thaliana) grown in the laboratory and in the field. We demonstrate that the LSD1 null mutant (lsd1), which is known to exhibit a runaway cell death in nonpermissive conditions, proves to be more tolerant to combined drought and high-light stress than the wild type. Moreover, depending on growing conditions, it shows variations in water use efficiency, salicylic acid and hydrogen peroxide concentrations, photosystem II maximum efficiency, and transcription profiles. However, despite these changes, lsd1 demonstrates similar seed yield under all tested conditions. All of these traits depend on EDS1 and PAD4. The differences in the pathways prevailing in the lsd1 in various growing environments are manifested by the significantly smaller number of transcripts deregulated in the field compared with the laboratory, with only 43 commonly regulated genes. Our data indicate that LSD1, EDS1, and PAD4 participate in the regulation of various molecular and physiological processes that influence Arabidopsis fitness. On the basis of these results, we emphasize that the function of such important regulators as LSD1, EDS1, and PAD4 should be studied not only under stable laboratory conditions, but also in the environment abounding in multiple stresses.


PLOS ONE | 2012

Chemical PARP Inhibition Enhances Growth of Arabidopsis and Reduces Anthocyanin Accumulation and the Activation of Stress Protective Mechanisms

Philipp Schulz; Jenny Neukermans; Katrien Van Der Kelen; Per Mühlenbock; Frank Van Breusegem; Graham Noctor; Markus Teige; Michael Metzlaff; Matthew A. Hannah

Poly-ADP-ribose polymerase (PARP) post-translationally modifies proteins through the addition of ADP-ribose polymers, yet its role in modulating plant development and stress responses is only poorly understood. The experiments presented here address some of the gaps in our understanding of its role in stress tolerance and thereby provide new insights into tolerance mechanisms and growth. Using a combination of chemical and genetic approaches, this study characterized phenotypes associated with PARP inhibition at the physiological level. Molecular analyses including gene expression analysis, measurement of primary metabolites and redox metabolites were used to understand the underlying processes. The analysis revealed that PARP inhibition represses anthocyanin and ascorbate accumulation under stress conditions. The reduction in defense is correlated with enhanced biomass production. Even in unstressed conditions protective genes and molecules are repressed by PARP inhibition. The reduced anthocyanin production was shown to be based on the repression of transcription of key regulatory and biosynthesis genes. PARP is a key factor for understanding growth and stress responses of plants. PARP inhibition allows plants to reduce protection such as anthocyanin, ascorbate or Non-Photochemical-Quenching whilst maintaining high energy levels likely enabling the observed enhancement of biomass production under stress, opening interesting perspectives for increasing crop productivity.


Plant Physiology | 2016

Lack of GLYCOLATE OXIDASE1, but Not GLYCOLATE OXIDASE2, Attenuates the Photorespiratory Phenotype of CATALASE2-Deficient Arabidopsis

Pavel Kerchev; Cezary Waszczak; Aleksandra Lewandowska; Patrick Willems; Alexey Shapiguzov; Zhen Li; Saleh Alseekh; Per Mühlenbock; Frank A. Hoeberichts; Jingjing Huang; Katrien Van Der Kelen; Jaakko Kangasjärvi; Alisdair R. Fernie; Riet De Smet; Yves Van de Peer; Joris Messens; Frank Van Breusegem

Arabidopsis GOX1 and GOX2 have distinct roles under photorespiration-promoting conditions. The genes coding for the core metabolic enzymes of the photorespiratory pathway that allows plants with C3-type photosynthesis to survive in an oxygen-rich atmosphere, have been largely discovered in genetic screens aimed to isolate mutants that are unviable under ambient air. As an exception, glycolate oxidase (GOX) mutants with a photorespiratory phenotype have not been described yet in C3 species. Using Arabidopsis (Arabidopsis thaliana) mutants lacking the peroxisomal CATALASE2 (cat2-2) that display stunted growth and cell death lesions under ambient air, we isolated a second-site loss-of-function mutation in GLYCOLATE OXIDASE1 (GOX1) that attenuated the photorespiratory phenotype of cat2-2. Interestingly, knocking out the nearly identical GOX2 in the cat2-2 background did not affect the photorespiratory phenotype, indicating that GOX1 and GOX2 play distinct metabolic roles. We further investigated their individual functions in single gox1-1 and gox2-1 mutants and revealed that their phenotypes can be modulated by environmental conditions that increase the metabolic flux through the photorespiratory pathway. High light negatively affected the photosynthetic performance and growth of both gox1-1 and gox2-1 mutants, but the negative consequences of severe photorespiration were more pronounced in the absence of GOX1, which was accompanied with lesser ability to process glycolate. Taken together, our results point toward divergent functions of the two photorespiratory GOX isoforms in Arabidopsis and contribute to a better understanding of the photorespiratory pathway.


Journal of Experimental Botany | 2016

Kresoxim-methyl primes Medicago truncatula plants against abiotic stress factors via altered reactive oxygen and nitrogen species signalling leading to downstream transcriptional and metabolic readjustment

Panagiota Filippou; Chrystalla Antoniou; Toshihiro Obata; Katrien Van Der Kelen; Vaggelis Harokopos; Loukas Kanetis; Vassilis Aidinis; Frank Van Breusegem; Alisdair R. Fernie; Vasileios Fotopoulos

Highlight The fungicide kresoxim-methyl displays novel priming properties against key abiotic stress factors (drought and salinity) by modifying reactive oxygen and nitrogen species signalling, inducing osmoprotection through increased proline biosynthesis and suppressing proteolysis.

Collaboration


Dive into the Katrien Van Der Kelen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge